专题-高考中的抽象函数-教师版.doc

专题-高考中的抽象函数-教师版.doc

ID:59822888

大小:287.00 KB

页数:6页

时间:2020-11-24

专题-高考中的抽象函数-教师版.doc_第1页
专题-高考中的抽象函数-教师版.doc_第2页
专题-高考中的抽象函数-教师版.doc_第3页
专题-高考中的抽象函数-教师版.doc_第4页
专题-高考中的抽象函数-教师版.doc_第5页
资源描述:

《专题-高考中的抽象函数-教师版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高考中的抽象函数特殊模型抽象函数正比例函数f(x)=kx(k≠0)f(x+y)=f(x)+f(y)幂函数f(x)=xnf(xy)=f(x)f(y)[或]指数函数f(x)=ax(a>0且a≠1)f(x+y)=f(x)f(y)[]对数函数f(x)=logax(a>0且a≠1)f(xy)=f(x)+f(y)[正、余弦函数f(x)=sinxf(x)=cosxf(x+T)=f(x)正切函数f(x)=tanx一.定义域问题--------多为简单函数与复合函数的定义域互求。例1.若函数y=f(x)的定义域是[-2,2],则函数y=f(x+1

2、)+f(x-1)的定义域为。解:f(x)的定义域是,意思是凡被f作用的对象都在中。评析:已知f(x)的定义域是A,求的定义域问题,相当于解内函数的不等式问题。练习:已知函数f(x)的定义域是,求函数的定义域。例2:已知函数的定义域为[3,11],求函数f(x)的定义域。评析:已知函数的定义域是A,求函数f(x)的定义域。相当于求内函数的值域。二、求值问题-----抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决。例3.①对任意实数x,y,均满足f(x+y2)=f(x)+2[f(y)]2且f(1)≠0,则f(20

3、01)=_______.解析:这种求较大自变量对应的函数值,一般从找周期或递推式着手:令x=0,y=1,得f(0+12)=f(0)+2f[(1)]2,令x=y=0,得:f(0)=0,∴f(1)=,练习:1.f(x)的定义域为,对任意正实数x,y都有f(xy)=f(x)+f(y)且f(4)=2,则()2.。2000.(,原式=16)3、对任意整数函数满足:,若,则CA.-1B.1C.19D.43四、求解析式问题(换元法,解方程组,待定系数法,递推法,区间转移法,例4.已知f(1+sinx)=2+sinx+cos2x,求f(x)解:

4、令u=1+sinx,则sinx=u-1(0≤u≤2),则f(u)=-u2+3u+1(0≤u≤2)故f(x)=-x2+3x+1(0≤u≤2)例5.是否存在这样的函数f(x),使下列三个条件:①f(n)>0,n∈N;②f(n1+n2)=f(n1)f(n2),n1,n2∈N*;③f(2)=4同时成立?若存在,求出函数f(x)的解析式;若不存在,说明理由.解:假设存在这样的函数f(x),满足条件,得f(2)=f(1+1)=4,解得f(1)=2.又f(2)=4=22,f(3)=23,…,由此猜想:f(x)=2x(x∈N*)小结:对于定义在

5、正整数集N*上的抽象函数,用数列中的递推法来探究,如果给出的关系式具有递推性,也常用递推法来求解.例6、已知是定义在R上的偶函数,且恒成立,当时,,则时,函数的解析式为(D)A.B.C.D.解:易知T=2,当时,,∴;当时,∴.故选D。五、单调性问题(抽象函数的单调性多用定义法解决)例7.设函数f(x)对任意实数x,y,都有f(x+y)=f(x)+f(y),若x>0时f(x)<0,且f(1)=-2,求f(x)在[-3,3]上的最大值和最小值.解析:由单调性的定义步骤设x1

6、1)+f(x1)0,∴f(x2-x1)<0)所以f(x)是R上的减函数,故f(x)在[-3,3]上的最大值为f(3)=f(1)+f(2)=3f(1)=-6,最小值为f(-3),令x=y=0,得f(0)=0,令y=-x,得f(-x)+f(x)=f(0)=0,即f(x)为奇函数.∴f(-3)=-f(3)=6.六、奇偶性问题例8.(1)已知函数f(x)(x≠0的实数)对任意不等于零的实数x、y都有f(x﹒y)=f(x)+f(y),试判断函数f(x)的奇偶性。解析:函数具备奇偶性的前提是定义域关于原点对称,

7、再考虑f(-x)与f(x)的关系:取y=-1有f(-x)=f(x)+f(-1),取x=y=-1有f(1)=2f(-1),取x=y=1有f(1)=0.所以f(-x)=f(x),即f(x)为偶函数。(2)已知y=f(2x+1)是偶函数,则函数y=f(2x)的图象的对称轴是(D)A.x=1B.x=2C.x=-D.x=解析:f(2x+1)关于x=0对称,则f(x)关于x=1对称,故f(2x)关于2x=1对称.注:若由奇偶性的定义看复合函数,一般用一个简单函数来表示复合函数,化繁为简。F(x)=f(2x+1)为偶函数,则f(-2x+1)=

8、f(2x+1)→f(x)关于x=1对称。例9:设是定义在上的偶函数,且在上是增函数,又。求实数的取值范围。解析:又偶函数的性质知道:在上减,而,,所以由得,解得。(设计理由:此类题源于变量与单调区间的分类讨论问题,所以本题弹性较大,可以作一些条件变换如:等;也可

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。