(课件)2.3.2离散型随机变量的方差

(课件)2.3.2离散型随机变量的方差

ID:5975750

大小:407.50 KB

页数:20页

时间:2017-11-16

(课件)2.3.2离散型随机变量的方差_第1页
(课件)2.3.2离散型随机变量的方差_第2页
(课件)2.3.2离散型随机变量的方差_第3页
(课件)2.3.2离散型随机变量的方差_第4页
(课件)2.3.2离散型随机变量的方差_第5页
资源描述:

《(课件)2.3.2离散型随机变量的方差》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.3.2离散型随机变量的方差高二数学选修2-3一、复习回顾1、离散型随机变量的数学期望2、数学期望的性质············数学期望是反映离散型随机变量的平均水平三、如果随机变量X服从两点分布为X10Pp1-p则四、如果随机变量X服从二项分布,即X~B(n,p),则二、探究要从两名同学中挑选出一名,代表班级参加射击比赛.根据以往的成绩记录,第一名同学击中目标靶的环数的分布列为P56789100.030.090.200.310.270.10第二名同学击中目标靶的环数的分布列为P567890.010.050.200.410.33请问应该派哪名同学参赛?发现两个均值相等因此只根

2、据均值不能区分这两名同学的射击水平.三、新课分析(一)、随机变量的方差(1)分别画出的分布列图.O5671098P0.10.20.30.40.5O56798P0.10.20.30.40.5(2)比较两个分布列图形,哪一名同学的成绩更稳定?思考除平均中靶环数以外,还有其他刻画两名同学各自射击特点的指标吗?第二名同学的成绩更稳定.1、定性分析2、定量分析思考怎样定量刻画随机变量的稳定性?(1)样本的稳定性是用哪个量刻画的?方差(2)能否用一个与样本方差类似的量来刻画随机变量的稳定性呢?(3)随机变量X的方差离散型随机变量取值的方差一般地,若离散型随机变量X的概率分布为:则称为随机变

3、量X的方差。············称为随机变量X的标准差。它们都是反映离散型随机变量偏离于均值的平均程度的量,它们的值越小,则随机变量偏离于均值的平均程度越小,即越集中于均值。3、对方差的几点说明(1)随机变量的方差和标准差都反映了随机变量取值偏离于均值的平均程度.方差或标准差越小,则随机变量偏离于均值的平均程度越小.说明:随机变量集中的位置是随机变量的均值;方差或标准差这种度量指标是一种加权平均的度量指标.(2)随机变量的方差与样本的方差有何联系与区别?随机变量的方差是常数,而样本的方差是随着样本的不同而变化的,因此样本的方差是随机变量.对于简单随机样本,随着样本容量的增加

4、,样本方差越来越接近总体方差,因此常用样本方差来估计总体方差.(二)、公式运用1、请分别计算探究中两名同学各自的射击成绩的方差.P56789100.030.090.200.310.270.10P567890.010.050.200.410.33因此第一名同学的射击成绩稳定性较差,第二名同学的射击成绩稳定性较好,稳定于8环左右.思考如果其他班级参赛选手的射击成绩都在9环左右,本班应该派哪一名选手参赛?如果其他班级参赛选手的成绩在7环左右,又应该派哪一名选手参赛?三、基础训练1、已知随机变量X的分布列X01234P0.10.20.40.20.1求DX和σX。解:一般地,如果随机变量

5、X服从两点分布,X10Pp1-p两个特殊分布的方差一般地,如果随机变量X服从二项分布,即X~B(n,p),则3、方差的性质线性变化平移变化不改变方差,但是伸缩变化改变方差相关练习:3、有一批数量很大的商品,其中次品占1%,现从中任意地连续取出200件商品,设其次品数为X,求EX和DX。117100.82,1.98六、课堂小结1、离散型随机变量取值的方差、标准差及意义2、记住几个常见公式4、应用举例例4.随机抛掷一枚质地均匀的骰子,求向上一面的点数的均值、方差和标准差.解:抛掷散子所得点数X的分布列为P654321X从而;.(1)计算例5.有甲乙两个单位都愿意聘用你,而你能获得如

6、下信息:甲单位不同职位月工资X1/元1200140016001800获得相应职位的概率P10.40.30.20.1乙单位不同职位月工资X2/元1000140018002200获得相应职位的概率P20.40.30.20.1根据工资待遇的差异情况,你愿意选择哪家单位?(2)决策问题解:根据月工资的分布列,利用计算器可算得因为,所以两家单位的工资均值相等,但甲单位不同职位的工资相对集中,乙单位不同职位的工资相对分散.这样,如果你希望不同职位的工资差距小一些,就选择甲单位;如果你希望不同职位的工资差距大一些,就选择乙单位.1.求离散型随机变量X的方差、标准差的一般步骤:④根据方差、标准

7、差的定义求出、①理解X的意义,写出X可能取的全部值;②求X取各个值的概率,写出分布列;③根据分布列,由期望的定义求出EX;课堂小结3、对于两个随机变量和在与相等或很接近时,比较和,可以确定哪个随机变量的性质更适合生产生活实际,适合人们的需要.掌握方差的线性变化性质2.能熟练地直接运用两个特殊分布的方差公式(1)若X服从两点分布,则(2)若,则

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。