排列与排列数公式应用题.ppt

排列与排列数公式应用题.ppt

ID:59589501

大小:747.00 KB

页数:27页

时间:2020-11-14

排列与排列数公式应用题.ppt_第1页
排列与排列数公式应用题.ppt_第2页
排列与排列数公式应用题.ppt_第3页
排列与排列数公式应用题.ppt_第4页
排列与排列数公式应用题.ppt_第5页
资源描述:

《排列与排列数公式应用题.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、排列数的应用莆田二中高二1班例1:(1)7位同学站成一排,共有多少种不同的排法?(2)7位同学站成两排(前3后4),共有多少种不同的排法?(3)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?(4)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?解法一:(特殊位置法)第一步:从其余5位同学中找2人站排头和排尾,有种;第二步:剩下的全排列,有种;答:共有24

2、00种不同的排列方法。解法二:(特殊元素法)第一步:将甲乙安排在除排头和排尾的5个位置中的两个位置上,有种;第二步:其余同学全排列,有种;答:共有2400种不同的排列方法。(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?解法三:(排除法)先全排列有种,其中甲或乙站排头有种,甲或乙站排尾的有种,甲乙分别站在排头和排尾的有种.答:共有2400种不同的排列方法。例2:七个家庭一起外出旅游,若其中四家是一个男孩,三家是一个女孩,现

3、将这七个小孩站成一排照相留念。若三个女孩要站在一起,有多少种不同的排法?解:将三个女孩看作一人与四个男孩排队,有种排法,而三个女孩之间有种排法,所以不同的排法共有:(种)。捆绑法若三个女孩要站在一起,四个男孩也要站在一起,有多少种不同的排法?不同的排法有:(种)说一说捆绑法一般适用于问题的处理。相邻例2:七个家庭一起外出旅游,若其中四家是一个男孩,三家是一个女孩,现将这七个小孩站成一排照相留念。捆绑法:对于相邻问题,常常先将要相邻的元素捆绑在一起,视作为一个元素,与其余元素全排列,再松绑后它们之间进行全排

4、列.这种方法就是捆绑法.若三个女孩互不相邻,有多少种不同的排法?解:先把四个男孩排成一排有种排法,在每一排列中有五个空档(包括两端),再把三个女孩插入空档中有种方法,所以共有:(种)排法。插空法例2:七个家庭一起外出旅游,若其中四家是一个男孩,三家是一个女孩,现将这七个小孩站成一排照相留念。男生、女生相间排列,有多少种不同的排法?解:先把四个男孩排成一排有种排法,在每一排列中有五个空档(包括两端),再把三个女孩插入空档中有种方法,所以共有:(种)排法。插空法例2:七个家庭一起外出旅游,若其中四家是一个男孩

5、,三家是一个女孩,现将这七个小孩站成一排照相留念。甲、乙两人的两边必须有其他人,有多少种不同的排法?解:先把其余五人排成一排有种排法,在每一排列中有四个空档(不包括两端),再把甲、乙插入空档中有种方法,所以共有:(种)排法。插空法例2:七个家庭一起外出旅游,若其中四家是一个男孩,三家是一个女孩,现将这七个小孩站成一排照相留念。插空法:对于不相邻问题,先将其余元素全排列,再将这些不相邻的元素插入空挡中,这种方法就是插空法.几种特殊的排列1.优先排列2.集团排列(捆绑法)3.间隔排列4.有序排列有附加条件的排

6、列应用题的基本解法:1)优先法有关特殊元素“在不在”特殊位置的排列问题要先找出“受限位置”与“受限元素”,然后以“受限位置”为主,用直接法逐位排列之,有时用间接法解之。2)捆绑法若干个元素相邻排列问题,一般用“捆绑法”。先把相邻的若干元素“捆绑”为一个大元素与其余元素全排列,然后再“松绑”,将这若干个元素内部全排列3)插空法若干个元素不相邻的排列问题,一般用插空法,即先将“普通元素”全排列,然后再在排就的每两个元素之间及两端插入特殊元素。4)排除法对某些问题的反面比较明了,可用排除法。练习1:用0到9这十

7、个数字,可以组成多少个没有重复数字的三位数?百位十位个位解法一:对排列方法分步思考。解法二:间接法.从0到9这十个数字中任取三个数字的排列数为,∴所求的三位数的个数是其中以0为排头的排列数为.练习2:7位同学排成一列,且甲、乙两同学必须相邻,丙不能站在排头和排尾的排法有多少种?解法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾,有A52种方法;将剩下的4个元素进行全排列有A4种方法;最后将甲、乙两个同学“松绑

8、”进行排列有A2种方法.所以这样的排法一共有A52A4A2=960种方法.甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?解法二:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,若丙站在排头或排尾有2A5种方法,所以丙不能站在排头和排尾的排法有(A6-2A5)P2=960种方法.甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?解法三:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。