《7.2.1 排列与排列数公式》导学案

《7.2.1 排列与排列数公式》导学案

ID:38014191

大小:95.00 KB

页数:4页

时间:2019-05-03

《7.2.1 排列与排列数公式》导学案_第1页
《7.2.1 排列与排列数公式》导学案_第2页
《7.2.1 排列与排列数公式》导学案_第3页
《7.2.1 排列与排列数公式》导学案_第4页
资源描述:

《《7.2.1 排列与排列数公式》导学案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《7.2.1排列与排列数公式》导学案一、排列课前预习学案一、预习目标预习排列的定义和排列数公式,了解排列数公式的推导过程,能应用排列数公式计算、化简、求值。二、预习内容1.一般的,叫做从n个不同元素中取出m个元素的一个排列。2.叫做从n个不同元素中取出m个元素的排列数,用符号表示。3.排列数公式A;4.全排列:。A。课内探究学案一、学习目标1.了解排列、排列数的定义;掌握排列数公式及推导方法;2.能用“树形图”写出一个排列问题的所有的排列,并能运用排列数公式进行计算。3.通过实例分析过程体验数学知识的形成和发展,总结数学规律,培养学习兴趣。学习重难点:教学重点:排列的定义、

2、排列数公式及其应用教学难点:排列数公式的推导二、学习过程合作探究一:排列的定义问题(1)从红球、黄球、白球三个小球中任取两个,分别放入甲、乙盒子里(2)从10名学生中选2名学生做正副班长;(3)从10名学生中选2名学生干部;上述问题中哪个是排列问题?为什么?概念形成1、元素:。2、排列:从个不同元素中,任取()个元素(这里的被取元素各不相同)按照一定的排成一列,叫做从个不同元素中取出个元素的一个排列。说明:(1)排列的定义包括两个方面:①②按一定的排列(与位置有关)(2)两个排列相同的条件:①元素,②元素的排列也相同合作探究二排列数的定义及公式3、排列数:从个不同元素中,任

3、取()个元素的所有排列的个数叫做从个元素中取出元素的排列数,用符号表示议一议:“排列”和“排列数”有什么区别和联系?4、排列数公式推导探究:从n个不同元素中取出2个元素的排列数是多少?呢?呢?()说明:公式特征:(1)第一个因数是,后面每一个因数比它前面一个少1,最后一个因数是,共有个因数;(2)即学即练:1.计算(1);(2);(3)2.已知,那么3.且则用排列数符号表示为()....例1.计算从这三个元素中,取出3个元素的排列数,并写出所有的排列。解析:(1)利用好树状图,确保不重不漏;(2)注意最后列举。解:变式训练:由数字1,2,3,4可以组成多少个没有重复数字的三

4、位数?并写出所有的排列。5、全排列:n个不同元素全部取出的一个排列,叫做n个不同元素的。此时在排列数公式中,m=n全排列数:(叫做n的阶乘).想一想:由前面联系中(2)(3)的结果我们看到,和有怎样的关系?那么,这个结果有没有一般性呢?排列数公式的另一种形式:另外,我们规定0!=1.想一想:排列数公式的两种不同形式,在应用中应该怎样选择?例2.求证:.解析:计算时,既要考虑排列数公式,又要考虑各排列数之间的关系;先化简,以减少运算量。解:点评:(1)熟记两个公式;(2)掌握两个公式的用途;(3)注意公式的逆用。思考:你能用计数原理直接解释例2中的等式吗?(提示:可就所取的m

5、个元素分类,分含某个元素a和不含元素a两类)变式训练:已知,求的值。三、反思总结1、是排列的特征;2、两个排列数公式的用途:乘积形式多用于,阶乘形式多用于或。四、当堂检测1.若,则()2.若,则的值为()3.已知,那么;4.一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道只能停放1列火车)?课后练习与提高1.下列各式中与排列数相等的是()(A)(B)n(n-1)(n-2)……(n-m)(C)(D)2.若n∈N且n<20,则(27-n)(28-n)……(34-n)等于()(A)(B)(C)(D)3.若S=,则S的个位数字是()(A)0(B)3(C

6、)5(D)84.已知,则n=。5.计算。6.解不等式:2<

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。