自动控制理论第二章ppt课件.ppt

自动控制理论第二章ppt课件.ppt

ID:59486045

大小:5.41 MB

页数:197页

时间:2020-09-13

自动控制理论第二章ppt课件.ppt_第1页
自动控制理论第二章ppt课件.ppt_第2页
自动控制理论第二章ppt课件.ppt_第3页
自动控制理论第二章ppt课件.ppt_第4页
自动控制理论第二章ppt课件.ppt_第5页
资源描述:

《自动控制理论第二章ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1第二章 自动控制系统的数学模型2-1控制系统微分方程的建立2-2非线性微分方程的线性化2-3传递函数2-4动态结构图2-5系统的脉冲响应函数2-6典型反馈系统传递函数返回主目录主要内容2基本要求1.了解建立系统动态微分方程的一般方法。2.熟悉拉氏变换的基本法则及典型函数的拉氏变换形式。3.掌握用拉氏变换求解微分方程的方法。4.掌握传递函数的概念及性质。5.掌握典型环节的传递函数形式。返回子目录36.掌握由系统微分方程组建立动态结构图的方法。7.掌握用动态结构图等效变换求传递函数和用梅森公式求传递函数的方法。8.掌握系统的开环传递函数、闭环传递函数,对参考输入和对干扰的系统闭环传递函数及误

2、差传递函数的概念。4分析和设计任何一个控制系统,首要任务是建立系统的数学模型。系统的数学模型是描述系统输入、输出变量以及内部各变量之间关系的数学表达式。建立数学模型的方法分为解析法和实验法5什么是数学模型?所谓的数学模型,是描述系统动态特性及各变量之间关系的数学表达式。控制系统定量分析的基础。数学模型的特点1)相似性:不同性质的系统,具有相同的数学模型。抽象的变量和系统2)简化性和准确性:忽略次要因素,简化之,但不能太简单,结果合理3)动态模型:变量各阶导数之间关系的微分方程。性能分析4)静态模型:静态条件下,各变量之间的代数方程。放大倍数数学模型的类型1)微分方程:时域其它模型的基础直观

3、求解繁琐2)传递函数:复频域微分方程拉氏变换后的结果3)频率特性:频域分析方法不同,各有所长2-1数学模型的概念6数学模型的建立方法1)分析法:根据系统各部分的运动机理,按有关定理列方程,合在一起。2)实验法:黑箱问题。施加某种测试信号,记录输出,用系统辨识的方法,得到数学模型。建模原则:选择合适的分析方法-确定相应的数学模型-简化7解析法:依据系统及元件各变量之间所遵循的物理、化学定律列写出变量间的数学表达式,并经实验验证。实验法:对系统或元件输入一定形式的信号(阶跃信号、单位脉冲信号、正弦信号等),根据系统或元件的输出响应,经过数据处理而辨识出系统的数学模型。8总结:解析方法适用于简单

4、、典型、常见的系统,而实验方法适用于复杂、非常见的系统。实际上常常是把这两种方法结合起来建立数学模型更为有效。92-1-1列写微分方程式的一般步骤1)分析系统运动的因果关系,确定系统的输入量、输出量及内部中间变量,搞清各变量之间的关系。2)忽略一些次要因素,合理简化。2-1系统微分方程的建立103)根据相关基本定律,列出各部分的原始方程式。4)列写中间变量的辅助方程。方程数与变量数相等!5)联立上述方程,消去中间变量,得到只包含输入输出的方程式。6)将方程式化成标准形。与输出有关的放在左边,与输入有关的放在右边,导数项按降阶排列,系数化为有物理意义的形式。11观察实际物理系统的运动方程,若

5、用线性定常特性来描述,则方程一般具有以下形式:线性微分方程的一般特征12式中,c(t)是系统的输出变量,r(t)是系统的输入变量。从工程可实现的角度来看,上述微分方程满足以下约束:(1)方程的系数为实常数,由系统自身参数决定;(2)左端的阶次比右端的高,n>=m。这是因为实际物理系统均有惯性或储能元件;(3)方程式两端的各项的量纲应一致。利用这点,可以检查微分方程式的正确与否。13列写微分方程的一般方法例2-1列写如图所示RLC网络的微分方程。RCur(t)uc(t)L14解:(1)确定输入量为ur(t),输出量为uc(t),中间变量为i(t)。(4)列写中间变量i与输出变量uc的关系式:

6、(5)将上式代入原始方程,消去中间变量得RCur(t)uc(t)L(2)网络按线性集中参数考虑且忽略输出端负载效应。(3)由KVL写原始方程:i(t)15(6)整理成标准形,令T1=L/R,T2=RC,则方程化为16三个基本的无源元件:质量m,弹簧k,阻尼器f对应三种阻碍运动的力:惯性力ma;弹性力ky;阻尼力fv例2-2弹簧-质量-阻尼器串联系统。试列出以外力F(t)为输入量,以质量的位移y(t)为输出量的运动方程式。解:遵照列写微分方程的一般步骤有:(1)确定输入量为F(t),输出量为y(t),作用于质量m的力还有弹性阻力Fk(t)和粘滞阻力Ff(t),均作为中间变量。(2)设系统按线

7、性集中参数考虑,且无外力作用时,系统处于平衡状态。17(3)按牛顿第二定律列写原始方程,即(5)将以上辅助方程式代入原始方程,消去中间变量,得(6)整理方程得标准形(4)写中间变量与输出量的关系式18T称为时间常数,为阻尼比。显然,上式描述了m-K-f系统的动态关系,它是一个二阶线性定常微分方程。令,即,则上式可写成19相似系统的定义:任何系统,只要它们的微分方程具有相同的形式。在方程中,占据相同位置的量,相似量。上面两

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。