知识点141 解分式方程(解答).doc

知识点141 解分式方程(解答).doc

ID:59350195

大小:3.25 MB

页数:285页

时间:2020-09-04

知识点141  解分式方程(解答).doc_第1页
知识点141  解分式方程(解答).doc_第2页
知识点141  解分式方程(解答).doc_第3页
知识点141  解分式方程(解答).doc_第4页
知识点141  解分式方程(解答).doc_第5页
资源描述:

《知识点141 解分式方程(解答).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1、(2011•孝感)解关于的方程:.考点:解分式方程。专题:计算题。分析:观察可得最简公分母是(x+3)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x+3)(x﹣1),得x(x﹣1)=(x+3)(x﹣1)+2(x+3),整理,得5x+3=0,解得x=﹣.检验:把x=﹣代入(x+3)(x﹣1)≠0.∴原方程的解为:x=﹣.点评:本题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.2、(2011•

2、咸宁)解方程.考点:解分式方程。专题:方程思想。分析:观察可得最简公分母是(x+1)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:两边同时乘以(x+1)(x﹣2),得x(x﹣2)﹣(x+1)(x﹣2)=3.(3分)解这个方程,得x=﹣1.(7分)检验:x=﹣1时(x+1)(x﹣2)=0,x=﹣1不是原分式方程的解,∴原分式方程无解.(8分)点评:考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.3、(2011•乌鲁

3、木齐)解方程:=+1.考点:解分式方程。专题:计算题。分析:观察可得最简公分母是2(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:原方程两边同乘2(x﹣1),得2=3+2(x﹣1),解得x=,检验:当x=时,2(x﹣1)≠0,∴原方程的解为:x=.点评:本题主要考查了解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根,难度适中.4、(2011•威海)解方程:.考点:解分式方程。专题:计算题。分析:观察可得最简公分母是(x﹣1)(x+1),方程两边乘

4、最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x﹣1)(x+1),得3x+3﹣x﹣3=0,解得x=0.检验:把x=0代入(x﹣1)(x+1)=﹣1≠0.∴原方程的解为:x=0.点评:本题考查了分式方程和不等式组的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)不等式组的解集的四种解法:大大取大,小小取小,大小小大中间找,大大小小找不到.5、(2011•潼南县)解分式方程:.考点:解分式方程。分析:观察可得最简公分母是(x

5、+1)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程两边同乘(x+1)(x﹣1),得x(x﹣1)﹣(x+1)=(x+1)(x﹣1)(2分)化简,得﹣2x﹣1=﹣1(4分)解得x=0(5分)检验:当x=0时(x+1)(x﹣1)≠0,∴x=0是原分式方程的解.(6分)点评:本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.6、(2011•台州)解方程:.考点:解分式方程。专题:计算题。分析:先求分母,再

6、移项,合并同类项,系数化为1,从而得出答案.解答:解:去分母,得x﹣3=4x(4分)移项,得x﹣4x=3,合并同类项,系数化为1,得x=﹣1(6分)经检验,x=﹣1是方程的根(8分).点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.7、(2011•随州)解方程:.考点:解分式方程。专题:计算题。分析:观察可得最简公分母是x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程两边同乘以x(x+3),得2(x+3)+x2=x(x+

7、3),2x+6+x2=x2+3x,∴x=6检验:把x=6代入x(x+3)=54≠0,∴原方程的解为x=6.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根.8、(2011•苏州)已知

8、a﹣1

9、+=0,求方裎+bx=1的解.考点:解分式方程;非负数的性质:绝对值;非负数的性质:算术平方根。专题:综合题;方程思想。分析:首先根据非负数的性质,可求出a、b的值,然后再代入方程求解即可.解答:解:∵

10、a﹣1

11、+=0,∴a﹣1=0,a=1;b+2=0,b=﹣2.∴﹣2

12、x=1,得2x2+x﹣1=0,解得x1=﹣1,x2=.经检验:x1=﹣1,x2=是原方程的解.∴原方程的解为:x1=﹣1,x2=.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.同时考查了解分式方程,注意解分式方程一定注意要验根.9、(2011•深圳)解分式方程:.考点:解分式方程。专题:计算题;方程思想。分析:公分母为

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。