《正弦函数图像变换》教学设计.doc

《正弦函数图像变换》教学设计.doc

ID:59250475

大小:245.00 KB

页数:6页

时间:2020-09-08

《正弦函数图像变换》教学设计.doc_第1页
《正弦函数图像变换》教学设计.doc_第2页
《正弦函数图像变换》教学设计.doc_第3页
《正弦函数图像变换》教学设计.doc_第4页
《正弦函数图像变换》教学设计.doc_第5页
资源描述:

《《正弦函数图像变换》教学设计.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.5正弦型函数y=Asin(ψx+φ)的图象变换教学设计精河县高级中学韩英教学目标:知识与技能目标:能借助计算机课件,通过探索、观察参数A、ω、φ对函数图象的影响,并能概括出三角函数图象各种变换的实质和内在规律;会用图象变换画出函数y=Asin(ωx+φ)的图象。过程与方法目标:通过对探索过程的体验,培养学生的观察能力和探索问题的能力,数形结合的思想;领会从特殊到一般,从具体到抽象的思维方法,从而达到从感性认识到理性认识的飞跃。情感、态度价值观目标:通过学习过程培养学生探索与协作的精神,提高合作学习的意识。教学重点:考察参数ω、φ、A对函数

2、图象的影响,理解由y=sinx的图象到y=Asin(ωx+φ)的图象变化过程。这个内容是三角函数的基本知识进行综合和应用问题接轨的一个重要模型。学生学习了函数y=Asin(ωx+φ)的图象,为后面高中物理研究《单摆运动》、《简谐运动》、《机械波》等知识提供了数学模型。所以,该内容在教材中具有非常重要的意义,是连接理论知识和实际问题的一个桥梁。教学难点:对y=Asin(ωx+φ)的图象的影响规律的发现与概括是本节课的难点。因为相对来说,、A对图象的影响较直观,ω的变化引起图象伸缩变化,学生第一次接触这种图象变化,不会观察,造成认知的难点,在教学

3、中,抓住“对图象的影响”的教学,使学生学会观察图象,经历研究方法,理解图象变化的实质,是克服这一难点的关键。学情分析:本节课在高一第二学段,学生进入高中学习已经三个月,对于高中常用的数学思想方法和研究问题的方法已经有初步的了解,并且逐步适应高中的学习方式和教师的教学方式,喜欢小组探究学习,喜欢独立思考,探究未知内容,学习欲望迫切。关于函数图象的变换,学生在学习第一模块时,接触过函数图象的平移,有“左加右减”,“上加下减”这样一些粗略的关于图象平移的认识,但对于本节内容学生要理解并掌握三个参数对函数图象的影响,还要研究三个参数对函数图象的综合影

4、响,且方法不唯一,知识密度较大,理解掌握起来难度较大。教学内容分析:三角函数是基本初等函数之一,是中学数学的重要内容。本节为三角函数图象与性质的重要内容,是一节函数图象探究的重要范例,同样也是提高学生识图、画图、数形结合等能力的一次锻炼。本节内容是在学生已经理解振幅变换、相位变换和周期变换的基础上,通过作图、观察、分析、归纳等方法,形成规律,得出从函数的图象到正弦型函数y=Asin(ωx+φ)图象的变换规律。观察函数、、、、图象间的关系,通过对比,探求有关性质以及图象的变换方法。鼓励学生大胆猜想,将直观问题抽象化,揭示本质,培养学生思维的深刻

5、性。利用计算机操作相关的课件,直观展示图象的变化,细致观察图象变化的数量,使学生学会观察。这就会使学生容易在学习的过程中把握图象变化的内在联系,进而理解本质的规律。首先对参数变化所引起的图象变化进行观察,获得参数对函数图象影响的大致感知,进而进行细致的量的变化的观察和分析,体现了对事物认识的螺旋式上升;从具体的函数出发,进而得出一般性的结论,体现了从特殊到一般,由感性到理性的过渡。教学流程图:教学过程:整个教学过程是“以问题为载体,以学生活动为主线”进行的。(一)创设情境:1.动画演示: 《用沙摆演示简谐运动的图象》2.根据你的知识,你能解决

6、函数哪些方面的问题?学生分析:可以求这个函数的最小正周期、单调区间以及“五点法”作图。教师追问:作出它的图象还有其他的方法吗?【设计意图】复习回顾,直接切入研究的课题。(板书课题:函数的图象)问题1:函数和我们熟知的正弦函数,有什么联系呢?学生思考,交流,正弦函数就是函数在A=1,ω=1,=0的特殊情况。【设计意图】采用《用沙摆演示简谐运动的图象》引出函数y=Asin(ωx+φ)的图象,体现该函数图象与生活实际的紧密联系,体现函数图象在物理学上的重要性,激发学生研究该函数图象的兴趣。引导学生思考y=Asin(ωx+φ)与正弦函数的一般与特殊的

7、关系,进而引导学生探讨正弦曲线与函数y=Asin(ωx+φ)的图象的关系。 (二)建构数学 自主探究:自主探究:由正弦曲线如何变化得到函数的图象?①问题提出:三种变换能否任意排序?②对于你们小组提出的变换方式,你要怎样解决你呢?【设计意图】观察函数解析式学生容易发现三个参数、、都发生了变化,自然恰当地提出本节的核心问题——三种变换能否任意排序呢?问题2:由正弦函数图象如何变换得到函数的图象?猜想(1)猜想(2) 【设计意图】观察函数解析式,容易发现参数、都发生了变化,根据已有的知识基础,自然恰当地提出本节的核心问题:两种变换能否任意排序,最后

8、确定研究方向。 A、 自主实验,形成初步结论:小组合做,根据自己的兴趣在两种变换中选择一种进行研究:问题3:按照第一种方法由函数的图象如何变换到的图象?按照第二种方

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。