欢迎来到天天文库
浏览记录
ID:59214543
大小:14.00 KB
页数:2页
时间:2020-10-30
《自然数平方数列和立方数列求和公式.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、自然数平方数列和立方数列求和公式怎么推导?即:(1)1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6(2)1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2推导过程如下:一.1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6利用立方差公式n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]=n^2+(n-1)^2+n^2-n=2*n^2+(n-1)^2-n2^3-1^3=2*2^2+1^2-23^3-2^3=2*3^2+2^2-34^3-3^3=2*4^2+3^2-
2、4......n^3-(n-1)^3=2*n^2+(n-1)^2-n各等式全相加n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)
3、/23(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)=(n/2)(n+1)(2n+1)故:1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6二.1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2证明如下:(n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2]=(2n^2+2n+1)(2n+1)=4n^3+6n^2+4n+12^4-1^4=4*1^3+6*1^2+4*1+13^4-2^4=4*2^3+6*2^2+4*2
4、+14^4-3^4=4*3^3+6*3^2+4*3+1......(n+1)^4-n^4=4*n^3+6*n^2+4*n+1各式相加有(n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+...+n^2)+4*(1+2+3+...+n)+n4*(1^3+2^3+3^3+...+n^3)=(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n=[n(n+1)]^21^3+2^3+...+n^3=[n(n+1)/2]^2
此文档下载收益归作者所有