欢迎来到天天文库
浏览记录
ID:59062002
大小:616.00 KB
页数:14页
时间:2020-10-29
《初二数学(教案9).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、初二数学证明与相似证明知识点:序号必记项目必记知识必记内容巧记方法1公理三角形全等的判定公理三边对应相等的两个三角形全等两边及夹角对应相等的两个三角形全等;两角及其夹边对应相等的两个三角形全等SSSSASASA2定理三角形全等的判定定理两角及其中一角的对边对应相等的两个三角形全等AAS3公理三角形全等的性质全等三角形的对应边相等、对应角相等4定理等腰三角形的性质的推论等腰三角形的两个底角相等等边对等角5定理等腰三角形的判定定理等腰三角形顶角的平分线、底边上的中线底边上的高互相重合“三线合一”6定理等边三
2、角形的判定定理有一个角等于60°的等腰三角形是等边三角形7定理有一个角等于30°的直角三角形的性质在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半8定理等边三角形的判定定理三个角都相等的三角形是等边三角形等角对等边9定理勾股定理直角三角形两条直角边的平方和等于斜边的平方符号语言:若∠C=90°,则c2=a2+b210概念互逆定理如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理11定理勾股定理的逆定理如果三角形的两边的平方和等于第三边的平方,那么这
3、个三角形为直角三角形符号语言若,则a2+b2=c2,∠C=90°。12定理直角三角形全等的判定定理斜边和直角边对应相等的两个直角三角形全等HL序号必记知识必记内容巧记方法必记项目1定理线段垂直平分线的性质线段垂直平分线上的点到线段两端点的距离相等有了中垂线,就有了相等的线段2定理线段垂直平分线的判定到线段两端点的距离相等的点在线段的垂直平分线上联想等腰三角形的“三线合一”3定理三角形的三条边上的垂直平分线的性质三角形的三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等三边中垂线共点提示有线段垂直
4、平分线时,通常把垂直平分线上的点与线段的两端点连接起来,利用等腰三角形的性质来解决问题4定理角平分线的性质角平分线上的点到这个角两边的距离相等图形与符号结合记忆5定理角平分线的判断在一个角的内部,且到角两边距离相等的点,在这个角的平分线上6定理三角形的三条角平分线的性质三角形的三条角平分线相交于一点,且这一点到三条边的距离相等三条角平分线共点中考题实战:1.(2011江西)某数学兴趣小组开展了一次活动,过程如下:设∠BAC=(0°<<90°).现把小棒依次摆放在两射线AB,AC之间,并使小棒两端分别落在
5、两射线上.活动一:如图甲所示,从点A1开始,依次向右摆放小棒,使小棒与小棒在两端点处互相垂直,A1A2为第1根小棒.数学思考:(1)小棒能无限摆下去吗?答:.(填“能”或“不能”)(2)设AA1=A1A2=A2A3=1.①=度;②若记小棒A2n-1A2n的长度为an(n为正整数,如A1A2=a1,A3A4=a2,),求此时a2,a3的值,并直接写出an(用含n的式子表示).活动二:如图乙所示,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1.数学思考:(3)若已经向右
6、摆放了3根小棒,则=,=,=;(用含的式子表示)(4)若只能摆放4根小棒,求的范围.2.(2011江苏宿迁,28,12分)如图,在Rt△ABC中,∠B=90°,AB=1,BC=,以点C为圆心,CB为半径的弧交CA于点D;以点A为圆心,AD为半径的弧交AB于点E. (1)求AE的长度;(2)分别以点A、E为圆心,AB长为半径画弧,两弧交于点F(F与C在AB两侧),连接AF、EF,设EF交弧DE所在的圆于点G,连接AG,试猜想∠EAG的大小,并说明理由.(第28题)3.(2011广东汕头,21,9分)如图(
7、1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△EFD绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图(2).[来源:学§科§网Z§X§X§K](1)问:始终与△AGC相似的三角形有及;[来源:学科网](2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据2的情况说明理由);(3)问:当x为何值时,△AGH是等腰三角
8、形?4.(2011湖南怀化,21,10分)如图8,△ABC,是一张锐角三角形的硬纸片,AD是边BC上的高,BC=40cm,AD=30cm,从这张硬纸片上剪下一个长HG是宽HE的2倍的矩形EFGH,使它的一边EF在BC上,顶点G、H分别在AC,AB上,AD与HG的交点为M.(1)求证:(2)求这个矩形EFGH的周长.5.(2011上海,25,14分)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥
此文档下载收益归作者所有