线性代数第五章 相似矩阵及二次型ppt课件.ppt

线性代数第五章 相似矩阵及二次型ppt课件.ppt

ID:59007746

大小:7.68 MB

页数:237页

时间:2020-09-26

线性代数第五章 相似矩阵及二次型ppt课件.ppt_第1页
线性代数第五章 相似矩阵及二次型ppt课件.ppt_第2页
线性代数第五章 相似矩阵及二次型ppt课件.ppt_第3页
线性代数第五章 相似矩阵及二次型ppt课件.ppt_第4页
线性代数第五章 相似矩阵及二次型ppt课件.ppt_第5页
资源描述:

《线性代数第五章 相似矩阵及二次型ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、定义1内积一、内积的定义及性质说明1维向量的内积是3维向量数量积的推广,但是没有3维向量直观的几何意义.内积的运算性质定义2令长度范数向量的长度具有下述性质:二、向量的长度及性质解单位向量夹角1正交的概念2正交向量组的概念正交若一非零向量组中的向量两两正交,则称该向量组为正交向量组.三、正交向量组的概念及求法证明3正交向量组的性质例1已知三维向量空间中两个向量正交,试求使构成三维空间的一个正交基.4向量空间的正交基即解之得由上可知构成三维空间的一个正交基.则有解5规范正交基例如同理可知(1)正交化,取,6求规范正交基的方法(2)单位化,取例2用

2、施密特正交化方法,将向量组正交规范化.解先正交化,取施密特正交化过程再单位化,得规范正交向量组如下例3解再把它们单位化,取几 何 解 释例4解把基础解系正交化,即合所求.亦即取证明定义4定理四、正交矩阵与正交变换为正交矩阵的充要条件是的列向量都是单位向量且两两正交.性质正交变换保持向量的长度不变.证明例5判别下列矩阵是否为正交阵.定义5若为正交阵,则线性变换称为正交变换.解所以它不是正交矩阵.考察矩阵的第一列和第二列,由于所以它是正交矩阵.由于例6解1.将一组基规范正交化的方法:先用施密特正交化方法将基正交化,然后再将其单位化.五、小结2.为正

3、交矩阵的充要条件是下列条件之一成立:求一单位向量,使它与正交.思考题思考题解答说明一、特征值与特征向量的概念解例1例2解例3设求A的特征值与特征向量.解得基础解系为:例4证明:若是矩阵A的特征值,是A的属于的特征向量,则证明再继续施行上述步骤次,就得证明则即类推之,有二、特征值和特征向量的性质把上列各式合写成矩阵形式,得注意1. 属于不同特征值的特征向量是线性无关的.2. 属于同一特征值的特征向量的非零线性组合仍是属于这个特征值的特征向量.3. 矩阵的特征向量总是相对于矩阵的特征值而言的,一个特征值具有的特征向量不唯一;一个特征向量不能属于不同

4、的特征值.例5设A是阶方阵,其特征多项式为解三、特征值与特征向量的求法求矩阵特征值与特征向量的步骤:四、小结思考题思考题解答一、相似矩阵与相似变换的概念1.等价关系二、相似矩阵与相似变换的性质证明推论若阶方阵A与对角阵利用对角矩阵计算矩阵多项式k个利用上述结论可以很方便地计算矩阵A的多项式.定理证明证明三、利用相似变换将方阵对角化命题得证.说明如果阶矩阵的个特征值互不相等,则与对角阵相似.推论如果的特征方程有重根,此时不一定有个线性无关的特征向量,从而矩阵不一定能对角化,但如果能找到个线性无关的特征向量,还是能对角化.例1判断下列实矩阵能否化为

5、对角阵?解解之得基础解系求得基础解系解之得基础解系故不能化为对角矩阵.A能否对角化?若能对角例2解解之得基础解系所以可对角化.注意即矩阵的列向量和对角矩阵中特征值的位置要相互对应.四、小结1.相似矩阵相似是矩阵之间的一种关系,它具有很多良好的性质,除了课堂内介绍的以外,还有:2.相似变换与相似变换矩阵这种变换的重要意义在于简化对矩阵的各种运算,其方法是先通过相似变换,将矩阵变成与之等价的对角矩阵,再对对角矩阵进行运算,从而将比较复杂的矩阵的运算转化为比较简单的对角矩阵的运算.相似变换是对方阵进行的一种运算,它把A变成   ,而可逆矩阵称为进行这

6、一变换的相似变换矩阵.思考题思考题解答定理1对称矩阵的特征值为实数.证明一、对称矩阵的性质说明:本节所提到的对称矩阵,除非特别说明,均指实对称矩阵.于是有两式相减,得定理1的意义证明于是证明它们的重数依次为根据定理1(对称矩阵的特征值为实数)和定理3(如上)可得:设的互不相等的特征值为由定理2知对应于不同特征值的特征向量正交,这样的特征向量共可得个.故这个单位特征向量两两正交.以它们为列向量构成正交矩阵,则根据上述结论,利用正交矩阵将对称矩阵化为对角矩阵,其具体步骤为:二、利用正交矩阵将对称矩阵对角化  的方法将特征向量正交化;3.将特征向量单

7、位化.4.2.1.解例对下列各实对称矩阵,分别求出正交矩阵,使为对角阵.(1)第一步求的特征值解之得基础解系解之得基础解系解之得基础解系第三步将特征向量正交化第四步将特征向量单位化于是得正交阵1.对称矩阵的性质:三、小结(1)特征值为实数;(2)属于不同特征值的特征向量正交;(3)特征值的重数和与之对应的线性无关的特征向量的个数相等;(4)必存在正交矩阵,将其化为对角矩阵,且对角矩阵对角元素即为特征值.2. 利用正交矩阵将对称阵化为对角阵的步骤:(1)求特征值;(2)找特征向量;(3)将特征向量单位化;(4)最后正交化.思考题思考题解答一、二次

8、型及其标准形的概念称为二次型.只含有平方项的二次型称为二次型的标准形(或法式).例如都为二次型;为二次型的标准形.1.用和号表示对二次型二、二次型的表

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。