与圆有关的计算教师版.doc

与圆有关的计算教师版.doc

ID:58997690

大小:446.50 KB

页数:5页

时间:2020-09-16

与圆有关的计算教师版.doc_第1页
与圆有关的计算教师版.doc_第2页
与圆有关的计算教师版.doc_第3页
与圆有关的计算教师版.doc_第4页
与圆有关的计算教师版.doc_第5页
资源描述:

《与圆有关的计算教师版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2013年中考数学专题复习与圆有关的计算【基础知识回顾】一、正多边形和圆:【名师提醒:正多边形的有关计算,一般是放在一个等腰三角形或一个直角三角形中进行,根据半径、边心距、边长、中心角等之间的边角关系作计算,以正三角形、正方形和正方边形为主】二、弧长与扇形面积计算:【名师提醒:1、以上几个公式都可进行变形,2、原公式中涉及的角都不带学位3、扇形的两个公式可根据已知条件灵活进行选择4、圆中的面积计算常见的是求阴影部分的面积,常用的方法有:⑴则图形面积的和与差⑵割补法⑶等积变形法⑷平移法⑸旋转法等】三、圆柱和圆锥

2、:【名师提醒:1、圆柱的高有条,圆锥的高有条2、圆锥的高h,母线长l,底高半径R满足关系3、注意圆锥的侧面展开圆中扇形的半径l是圆锥的扇形的弧长是圆锥的4、圆锥的母线为l,底面半径为R,侧面展开图扇形的圆心角度数为n若l=2r,则n=c=3r,则n=c=4r则n=】【典型例题解析】考点一:正多边形和圆例1(2012•咸宁)如图,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为(  )A.B.C.D.对应训练1.(2012•安徽)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草

3、砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为(  )A.2a2B.3a2C.4a2D.5a2考点二:圆周长与弧长例2(2012•北海)如图,在边长为1的正方形组成的网格中,△ABC的顶点都在格点上,将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为(  )A.10πB.C.D.π对应训练3.(2012•广安)如图,Rt△ABC的边BC位于直线l上,AC=,∠ACB=90°,∠A=30°.若Rt△ABC由现在的位置向右滑动地旋转,当点A第3次落在直线l上

4、时,点A所经过的路线的长为)π(结果用含有π的式子表示)考点三:扇形面积与阴影部分面积例3(2012•毕节地区)如图,在正方形ABCD中,以A为顶点作等边△AEF,交BC边于E,交DC边于F;又以A为圆心,AE的长为半径作.若△AEF的边长为2,则阴影部分的面积约是(  )(参考数据:≈1.414,≈1.732,π取3.14)A.0.64B.1.64C.1.68D.0.36对应训练3.(2012•内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分图形的面积为(  )A.4πB.

5、2πC.πD.考点四:圆柱、圆锥的侧面展开图例4(2012•永州)如图,已知圆O的半径为4,∠A=45°,若一个圆锥的侧面展开图与扇形OBC能完全重合,则该圆锥的底面圆的半径为1.对应训练7.(2012•襄阳)如图,从一个直径为4dm的圆形铁皮中剪出一个圆心角为60°的扇形ABC,并将剪下来的扇形围成一个圆锥,则圆锥的底面半径为1dm.【聚焦山东中考】1.(2012•日照)如图,在4×4的正方形网格中,若将△ABC绕着点A逆时针旋转得到△AB′C′,则的长为(  )A.πB.C.7πD.6π2.(2012•临

6、沂)如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为(  )A.1B.C.D.23.(2012•德州)如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为1,则凸轮的周长等于π.4.(2012•烟台)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=2.将△ABC绕顶点A顺时针方向旋转至△AB′C′的位置,B,A,C′三点共线,则线段BC扫过的区域面积为.【备考真题过关】一、选择题1.(2012•湛江

7、)一个扇形的圆心角为60°,它所对的弧长为2πcm,则这个扇形的半径为(  )A.6cmB.12cmC.2cmD.6cm2.(2012•漳州)如图,一枚直径为4cm的圆形古钱币沿着直线滚动一周,圆心移动的距离是(  )A.2πcmB.4πcmC.8πcmD.16πcm3.(2012•珠海)如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为(  )A.30°B.45°C.60°D.90°4.(2012•鄂州)如图,四边形OABC为菱形,点A,B在以O为圆心的弧上,若OA=2,∠1=∠2,则扇形ODE的面

8、积为(  )A.B.C.2πD.3π5.(2012•黑河)如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为(  )A.4-πB.4-2πC.8+πD.8-2π6.(2012•黄石)如图所示,扇形AOB的圆心角为120°,半径为2,则图中阴影部分的面积为(  )A.B.C.D.7.(2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。