资源描述:
《第9章 常微分方程初值问题数值解法》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第9章常微分方程初值问题数值解法9.1引言9.2简单的数值方法与基本概念9.3龙格-库塔方法9.4单步法的收敛性与稳定性9.5线性多步法9.6方程组和高阶方程9.1引言科学技术中常常需要求解常微分方程的定解问题.这类问题最简单的形式,是本章将着重考察的一阶方程的初值问题我们知道,只有f(x,y)适当光滑—譬如关于y满足利普希茨(Lipschitz)条件理论上就可以保证初值问题的解y=f(x)存在并且唯一.虽然求解常微分方程有各种各样的解析方法,但解析方法只能用来求解一些特殊类型的方程,实际问题中归结出来的微分方程主要靠数值解法.所谓数值解法,就是寻求解y(x)在
2、一系列离散节点上的近似值y1,y2,,yn,yn+1,.相邻两个节点的间距hn=xn+1-xn称为步长.今后如不特别说明,总是假定hi=h(i=1,2,)为定数,这时节点为xn=x0+nh(i=0,1,2,)(等距节点).初值问题的数值解法有个基本特点,他们都采取“步进式”,即求解过程顺着节点排列的次序一步一步地向前推进.描述这类算法,只要给出用已知信息yn,yn-1,yn-2,计算yn+1的递推公式.首先,要对微分方程离散化,建立求解数值解的递推公式.一类是计算yn+1时只用到前一点的值yn,称为单步法.另一类是用到yn+1前面k点的值yn,yn-1
3、,,yn-k+1,称为k步法.其次,要研究公式的局部截断误差和阶,数值解yn与精确解y(xn)的误差估计及收敛性,还有递推公式的计算稳定性等问题.9.2简单的数值方法与基本概念9.2.1欧拉法与后退欧拉法我们知道,在xy平面上,微分方程(1.1)式的解y=f(x)称作它的积分曲线,积分曲线上一点(x,y)的切线斜率等于函数f(x,y)的值.如果按f(x,y)在xy平面上建立一个方向场,那么,积分曲线上每一点的切线方向均与方向场在该点的方向相一致.基于上述几何解释,我们从初始点P0(x0,y0)出发,先依方向场在该点的方向推进到x=x1上一点P1,然后再从P1点
4、依方向场在该点的方向推进到x=x2上一点P2,循环前进做出一条折线P0P1P2.一般地,设已做出该折线的顶点Pn,过Pn(xn,yn)依方向场的方向再推进到Pn+1(xn+1,yn+1),显然两个顶点Pn,Pn+1的坐标有关系这就是著名的(显式)欧拉(Euler)公式.若初值y0已知,则依公式(2.1)可逐次逐步算出各点数值解.即例1用欧拉公式求解初值问题解取步长h=0.1,欧拉公式的具体形式为其中xn=nh=0.1n(n=0,1,,10),已知y0=1,由此式可得依次计算下去,部分计算结果见下表.与准确解相比,可看出欧拉公式的计算结果精度很差.xn欧拉公式
5、数值解yn准确解y(xn)误差0.20.40.60.81.01.1918181.3582131.5089661.6497831.7847701.1832161.3416411.4832401.6124521.7320510.0086020.0165720.0257260.0373310.052719欧拉公式具有明显的几何意义,就是用折线近似代替方程的解曲线,因而常称公式(2.1)为欧拉折线法.还可以通过几何直观来考察欧拉方法的精度.假设yn=y(xn),即顶点Pn落在积分曲线y=y(x)上,那么,按欧拉方法做出的折线PnPn+1便是y=y(x)过点Pn的切线.从
6、图形上看,这样定出的顶点Pn+1显著地偏离了原来的积分曲线,可见欧拉方法是相当粗糙的.为了分析计算公式的精度,通常可用泰勒展开将y(xn+1)在xn处展开,则有在yn=y(xn)的前提下,f(xn,yn)=f(xn,y(xn))=y(xn).于是可得欧拉法(2.1)的公式误差为称为此方法的局部截断误差.如果对方程(1.1)从xn到xn+1积分,得右端积分用左矩形公式hf(xn,y(xn))近似,再以yn代替y(xn),yn+1代替y(xn+1)也得到欧拉公式(2.1),局部截断误差也是(2.3).称为(隐式)后退的欧拉公式.如果右端积分用右矩形公式hf(xn+
7、1,y(xn+1))近似,则得到另一个公式后退的欧拉公式与欧拉公式有着本质的区别,后者是关于yn+1的一个直接计算公式,这类公式称作是显式的;前者公式的右端含有未知的yn+1,它实际上是关于yn+1的一个函数方程,这类方程称作是隐式的.显式与隐式两类方法各有特点,考虑到数值稳定性等其他因素,人们有时需要选用隐式方法,但使用显式算法远比隐式方便.隐式方程通常用迭代法求解,而迭代过程的实质是逐步显式化.设用欧拉公式给出迭代初值,用它代入(2.5)式的右端,使之转化为显式,直接计算得然后再用代入(2.5)式,又有如此反复进行,得由于f(x,y)对y满足Lipschit
8、z条件(1.3).由(2