分类加法计数原理与分步乘法计数原理课件(人教B版选修23).ppt

分类加法计数原理与分步乘法计数原理课件(人教B版选修23).ppt

ID:58941804

大小:1.20 MB

页数:52页

时间:2020-09-28

分类加法计数原理与分步乘法计数原理课件(人教B版选修23).ppt_第1页
分类加法计数原理与分步乘法计数原理课件(人教B版选修23).ppt_第2页
分类加法计数原理与分步乘法计数原理课件(人教B版选修23).ppt_第3页
分类加法计数原理与分步乘法计数原理课件(人教B版选修23).ppt_第4页
分类加法计数原理与分步乘法计数原理课件(人教B版选修23).ppt_第5页
资源描述:

《分类加法计数原理与分步乘法计数原理课件(人教B版选修23).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.1分类加法计数原理与分步乘法计数原理用A~Z或0~9给教室的座位编号有多少不同的号码?分析:给座位编号有2类方法,第一类方法,用英文字母,有26种号码;第二类方法,用阿拉伯数字,有10种号码;所以有26+10=36种不同号码.从甲地到乙地,可以乘火车,也可以乘汽车。一天中,火车有4班,汽车有2班。那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?分析:从甲地到乙地有2类方法,第一类方法,乘火车,有4种方法;第二类方法,乘汽车,有2种方法;所以从甲地到乙地共有4+2=6种方法.你能说出这两个问题的共同特征吗?分类加法计数原理完成一件

2、事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同的方法两类中的方法不相同例在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体如下:A大学生物学 化学 医学 物理学 工程学B大学数学 会计学 信息技术学 法学这名同学可能的专业选择共有多少种?分析:两大学只能选一所一专业,且没有共同的强项专业54+=9这名同学可能的专业选择共有9种从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中,火车有4班,汽车有2班,轮船有3班。那么一天中乘坐

3、这些交通工具从甲地到乙地共有多少种不同的走法?分析:从甲地到乙地有3类方法,第一类方法,乘火车,有4种方法;第二类方法,乘汽车,有2种方法;第三类方法,乘轮船,有3种方法;所以从甲地到乙地共有4+2+3=9种方法.完成一件事有三类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,在第3类方案中有m3种不同的方法。那么完成这件事共有m1+m2+m3种方法.做一件事情,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法。那么完成这件事共有___

4、_______种不同的方法N=m1+m2+…+mn用前6个大写英文字母和1~9个阿拉伯数字,以A1,A2,,B1,B2的方式给教室的座位编号.有多少不同的号码?A123456789A1A2A3A4A5A6A7A8A99种B1234567899种6×9=54如图,由A村去B村的道路有3条,由B村去C村的道路有2条。从A村经B村去C村,共有多少种不同的走法?A村B村C村北南中北南分析:从A村经B村去C村有2步,第一步,由A村去B村有3种方法,第二步,由B村去C村有2种方法,所以从A村经B村去C村共有3×2=6种不同的方法你能说出这两个问题的共同

5、特征吗?分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.例设某班有男生30名,女生24名.现要从中选出男、女各一名代表班级参加比赛,共有多少种不同的选法?分两步进行选取男女3024×=720再根据分步乘法原理若再要从语,数,英三科科任老师中选出一名代表参加比赛,那又共有多少种选法?老师3×=2160如果完成一件事需要三个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,做第3步有m3种不同的方法,那么完成这件事共有_________________

6、种不同的方法.N=m1×m2×m3做一件事情,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事有_____________________种不同的方法.N=m1×m2×…×mn例书架第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.(1)从书架中取1本书,有多少种不同取法?有3类方法,根据分类加法计数原理N=4+3+2=9(2)从书架第1,2,3层各取1本书,有多少种不同取法?分3步完成,根据分步乘法计数原理N=4×3×2=24解

7、题关键:从总体上看做这件事情是“分类完成”,还是“分步完成”.再根据其对应的计数原理计算.练习要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?分两步完成左边右边甲乙丙乙丙甲丙甲乙32第一步第二步×在所有的两位数中,个位数字大于十位数字的两位数共有多少个?分析1:按个位数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别是:1个,2个,3个,4个,5个,6个,7个,8个.根据加法原理共有1+2+3+4+5+6+7+8=36(个).分析2:按十位数字是1,2,3,4,5,6,7

8、,8分成8类,在每一类中满足条件的两位数分别是:8个,7个,6个,5个,4个,3个,2个,1个.根据加法原理共有8+7+6+5+4+3+2+1=36(

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。