欢迎来到天天文库
浏览记录
ID:58911845
大小:1.77 MB
页数:77页
时间:2020-09-29
《立体几何中的向量方法(平行垂直夹角距离)ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.2立体几何中的向量方法----直线的方向向量与平面的法向量一、点、直线、平面的位置的向量表示点●O●P基点空间中任意一点P的位置可用向量表示直线●A●Pl点A和不仅可以确定直线l的位置,还可以具体表示出l上的任意一点P。平面O●P点O和、不仅可以确定平面的位置,还可以具体表示出内的任意一点P。平面法向量:若,则叫做平面的法向量。●A过点A,以为法向量的平面是完全确定的二、线线、线面、面面间的位置关系与向量运算的关系探究1:平行关系设直线l,m的方向向量分别为,,平面,的法向量分别为,线线平行线面平行面面平行点击点击点击探究2:垂直关系设直线l,m的方向向量分别为,,平面,的法向量分
2、别为,线线垂直线面垂直面面垂直点击点击点击探究3:夹角设直线l,m的方向向量分别为,,平面,的法向量分别为,线线夹角线面夹角面面夹角点击点击点击三、简单应用练习1:设直线l,m的方向向量分别为,,根据下列条件判断l,m的位置关系:练习2:设平面,的法向量分别为,,根据下列条件判断,的位置关系:四、课堂小结1、点、直线、平面的位置的向量表示2、线线、线面、面面间的位置关系的向量表示五、思考lmllmllmlmll3.2立体几何中的向量方法(2)----空间角与距离的计算举例一、复习二、讲授新课1、用空间向量解决立体几何问题的“三步曲”。(1)建立立体图形与空间向量的联系,用空间向量表示问
3、题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(3)把向量的运算结果“翻译”成相应的几何意义。(化为向量问题)(进行向量运算)(回到图形问题)2、例题例1:如图1:一个结晶体的形状为四棱柱,其中,以顶点A为端点的三条棱长都相等,且它们彼此的夹角都是60°,那么以这个顶点为端点的晶体的对角线的长与棱长有什么关系?A1B1C1D1ABCD图1解:如图1,设化为向量问题依据向量的加法法则,进行向量运算所以回到图形问题这个晶体的对角线的长是棱长的倍。思考:(1)本题中四棱柱的对角线BD1的长与棱长有什么
4、关系?(2)如果一个四棱柱的各条棱长都相等,并且以某一顶点为端点的各棱间的夹角都等于,那么有这个四棱柱的对角线的长可以确定棱长吗?A1B1C1D1ABCD分析:分析:∴这个四棱柱的对角线的长可以确定棱长。(3)本题的晶体中相对的两个平面之间的距离是多少?(提示:求两个平行平面的距离,通常归结为求两点间的距离)A1B1C1D1ABCDH分析:面面距离回归图形点面距离向量的模解:∴所求的距离是练习:如图2,空间四边形OABC各边以及AC,BO的长都是1,点D,E分别是边OA,BC的中点,连结DE,计算DE的长。OABCDE图2例2:如图3,甲站在水库底面上的点A处,乙站在水坝斜面上的点B处
5、。从A,B到直线(库底与水坝的交线)的距离AC和BD分别为和,CD的长为,AB的长为。求库底与水坝所成二面角的余弦值。解:如图,化为向量问题根据向量的加法法则进行向量运算于是,得设向量与的夹角为,就是库底与水坝所成的二面角。因此ABCD图3所以回到图形问题库底与水坝所成二面角的余弦值为例2:如图3,甲站在水库底面上的点A处,乙站在水坝斜面上的点B处。从A,B到直线(库底与水坝的交线)的距离AC和BD分别为和,CD的长为,AB的长为。求库底与水坝所成二面角的余弦值。思考:(1)本题中如果夹角可以测出,而AB未知,其他条件不变,可以计算出AB的长吗?ABCD图3分析:∴可算出AB的长。(2
6、)如果已知一个四棱柱的各棱长和一条对角线的长,并且以同一顶点为端点的各棱间的夹角都相等,那么可以确定各棱之间夹角的余弦值吗?分析:如图,设以顶点为端点的对角线长为,三条棱长分别为各棱间夹角为。A1B1C1D1ABCD(3)如果已知一个四棱柱的各棱长都等于,并且以某一顶点为端点的各棱间的夹角都等于,那么可以确定这个四棱柱相邻两个夹角的余弦值吗?A1B1C1D1ABCD分析:二面角平面角向量的夹角回归图形解:如图,在平面AB1内过A1作A1E⊥AB于点E,EF在平面AC内作CF⊥AB于F。∴可以确定这个四棱柱相邻两个夹角的余弦值。练习:(1)如图4,60°的二面角的棱上有A、B两点,直线A
7、C、BD分别在这个二面角的两个半平面内,且都垂直AB,已知AB=4,AC=6,BD=8,求CD的长。B图4ACD(2)三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,∠A1AB=45°,∠A1AC=60°,求二面角B-AA1-C的平面角的余弦值。ABCA1B1C1图5如图6,在棱长为的正方体中,分别是棱上的动点,且。(1)求证:;(2)当三棱锥的体积取最大值时,求二面角的正切值。O’C’B’A’OABCEF图6思考:小结:用空间向量解决
此文档下载收益归作者所有