欢迎来到天天文库
浏览记录
ID:58875615
大小:129.50 KB
页数:10页
时间:2020-09-21
《2015年浙江省高考数学试卷(理科)答案与解析.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、..2015年省高考数学试卷(理科)参考答案与试题解析 一、选择题:本大题共8小题,每小题5分,共40分1.(5分)(2015•)已知集合P={x
2、x2﹣2x≥0},Q={x
3、1<x≤2},则(∁RP)∩Q=( ) A.[0,1)B.(0,2]C.(1,2)D.[1,2]考点:交、并、补集的混合运算.菁优网所有专题:集合.分析:求出P中不等式的解集确定出P,求出P补集与Q的交集即可.解答:解:由P中不等式变形得:x(x﹣2)≥0,解得:x≤0或x≥2,即P=(﹣∞,0]∪[2,+∞),∴∁RP=(0,2),∵Q=(1,2
4、],∴(∁RP)∩Q=(1,2),故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键. 2.(5分)(2015•)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( ) A.8cm3B.12cm3C.D.考点:由三视图求面积、体积.菁优网所有专题:空间位置关系与距离.分析:判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答:解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.点评:
5、本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力. .....3.(5分)(2015•)已知{an}是等差数列,公差d不为零,前n项和是Sn,若a3,a4,a8成等比数列,则( ) A.a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>0考点:等差数列与等比数列的综合.菁优网所有专题:等差数列与等比数列.分析:由a3,a4,a8成等比数列,得到首项和公差的关系,即可判断a1d和dS4的符号.解答:解:设等差数列{an}的首项为a1,则a3=a1+2d,a
6、4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0.故选:B.点评:本题考查了等差数列和等比数列的性质,考查了等差数列的前n项和,是基础题. 4.(5分)(2015•)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是( ) A.∀n∈N*,f(n)∉N*且f(n)>nB.∀n∈N*,f(n)∉N*或f(n)>n C.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n0考点:命题的否定.菁优网所有专题:简易逻辑.
7、分析:根据全称命题的否定是特称命题即可得到结论.解答:解:命题为全称命题,则命题的否定为:∃n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.点评:本题主要考查含有量词的命题的否定,比较基础. 5.(5分)(2015•)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是( ) A.B.C.D.考点:直线与圆锥曲线的关系.菁优网所有专题:圆锥曲线的定义、性质与方程.分析:根据抛物线的定义,将三角形的面积关系转化为的关
8、系进行求解即可.解答:解:如图所示,抛物线的准线DE的方程为x=﹣1,过A,B分别作AE⊥DE于E,交y轴于N,BD⊥DE于E,交y轴于M,由抛物线的定义知BF=BD,AF=AE,则
9、BM
10、=
11、BD
12、﹣1=
13、BF
14、﹣1,
15、AN
16、=
17、AE
18、﹣1=
19、AF
20、﹣1,.....则===,故选:A点评:本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键. 6.(5分)(2015•)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数( )命题①:
21、对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C) A.命题①和命题②都成立B.命题①和命题②都不成立 C.命题①成立,命题②不成立D.命题①不成立,命题②成立考点:复合命题的真假.菁优网所有专题:集合;简易逻辑.分析:命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可.解答:解:命题①:对任意有限集A,B,若“A≠B”,则A∪B≠A∩B,则card(A∪B)>card(A∩B),故“d(A,B)>0”
22、成立,若d(A,B)>0”,则card(A∪B)>card(A∩B),则A∪B≠A∩B,故A≠B成立,故命题①成立,命题②,d(A,B)=card(A∪B)﹣card(A∩B),d(B,C)=card(B∪C)﹣card(B∩C),∴d(A,B)+d(B,C)=card(A∪B)﹣card(A∩B)+c
此文档下载收益归作者所有