三角形的有关概念(提高)知识讲解.doc

三角形的有关概念(提高)知识讲解.doc

ID:58806871

大小:433.00 KB

页数:7页

时间:2020-09-27

三角形的有关概念(提高)知识讲解.doc_第1页
三角形的有关概念(提高)知识讲解.doc_第2页
三角形的有关概念(提高)知识讲解.doc_第3页
三角形的有关概念(提高)知识讲解.doc_第4页
三角形的有关概念(提高)知识讲解.doc_第5页
资源描述:

《三角形的有关概念(提高)知识讲解.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、三角形的有关概念(提高)知识讲解【学习目标】1.理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法.毛2.理解并会应用三角形三边间的关系.3.理解三角形的高、中线、角平分线的概念,学会它们的画法.4.对三角形的稳定性有所认识,知道这个性质有广泛的应用.【要点梳理】要点一、三角形的定义由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点诠释:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角;③三角形的顶

2、点:即相邻两边的公共端点.(2)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.(3)三角形的表示:三角形用符号“△”表示,顶点为A、B、C的三角形记作“△ABC”,读作“三角形ABC”,注意单独的△没有意义;△ABC的三边可以用大写字母AB、BC、AC来表示,也可以用小写字母a、b、c来表示,边BC用a表示,边AC、AB分别用b、c表示.要点二、三角形的三边关系定理:三角形任意两边之和大于第三边.推论:三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.

3、(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系.要点三、三角形的分类1.按角分类:要点诠释:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.2.按边分类:要点诠释:①不等边三角形:三边都不相等的三角形;②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边

4、夹角叫做底角;③等边三角形:三边都相等的三角形.要点四、三角形的三条重要线段三角形的高、中线和角平分线是三角形中三条重要的线段,它们提供了重要的线段或角的关系,为我们以后深入研究三角形的一些特征起着很大的帮助作用,因此,我们需要从不同的角度弄清这三条线段,列表如下:线段名称三角形的高三角形的中线三角形的角平分线文字语言从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.三角形中,连接一个顶点和它对边中点的线段.三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段.图形语言作图语言过

5、点A作AD⊥BC于点D.取BC边的中点D,连接AD.作∠BAC的平分线AD,交BC于点D.标示图形符号语言1.AD是△ABC的高.2.AD是△ABC中BC边上的高.3.AD⊥BC于点D.4.∠ADC=90°,∠ADB=90°.(或∠ADC=∠ADB=90°)1.AD是△ABC的中线.2.AD是△ABC中BC边上的中线.3.BD=DC=BC4.点D是BC边的中点.1.AD是△ABC的角平分线.2.AD平分∠BAC,交BC于点D.3.∠1=∠2=∠BAC.推理语言因为AD是△ABC的高,所以AD⊥BC.(或∠ADB

6、=∠ADC=90°)因为AD是△ABC的中线,所以BD=DC=BC.因为AD平分∠BAC,所以∠1=∠2=∠BAC.1.线段垂直.1.线段相等.角度相等.用途举例2.角度相等.2.面积相等.注意事项1.与边的垂线不同.2.不一定在三角形内.—与角的平分线不同.重要特征三角形的三条高(或它们的延长线)交于一点.一个三角形有三条中线,它们交于三角形内一点.一个三角形有三条角平分线,它们交于三角形内一点.要点五、三角形的稳定性   三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性。要点

7、诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变. (2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.  (3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在门框未安好之前,

8、先在门框上斜着钉一根木板,使它不变形.【典型例题】类型一、三角形的概念及表示1.若有一条公共边的两个三角形称为一对“共边三角形”,则下图中以BC为公共边的“共边三角形”有()A.2对;B.3对;C.4对;D.6对;【思路点拨】对比三角形的相关概念分析和思考.【答案】B【解析】以BC为公共边的“共边三角形”有:△BDC与△BEC、△BDC与△BAC、△BEC与△BAC三对.【总结升华】根

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。