欢迎来到天天文库
浏览记录
ID:58805013
大小:155.50 KB
页数:6页
时间:2020-09-27
《导数的单调性极值最值问题综合汇总.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、例1.已知f(x)=ex-ax-1.(1)求f(x)的单调增区间;(2)若f(x)在定义域R内单调递增,求a的取值范围;(3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a的值;若不存在,说明理由.解:=ex-a.(1)若a≤0,=ex-a≥0恒成立,即f(x)在R上递增.若a>0,ex-a≥0,∴ex≥a,x≥lna.∴f(x)的单调递增区间为(lna,+∞).(2)∵f(x)在R内单调递增,∴≥0在R上恒成立.∴ex-a≥0,即a≤ex在R上恒成立.
2、∴a≤(ex)min,又∵ex>0,∴a≤0.(3)方法一由题意知ex-a≤0在(-∞,0]上恒成立.∴a≥ex在(-∞,0]上恒成立.∵ex在(-∞,0]上为增函数.∴x=0时,ex最大为1.∴a≥1.同理可知ex-a≥0在[0,+∞)上恒成立.∴a≤ex在[0,+∞)上恒成立.∴a≤1,∴a=1.方法二由题意知,x=0为f(x)的极小值点.∴=0,即e0-a=0,∴a=1.变式训练1.已知函数f(x)=x3-ax-1.(1)若f(x)在实数集R上单调递增,求实数a的取值范围;(2)是否存在实数
3、a,使f(x)在(-1,1)上单调递减?若存在,求出a的取值范围;若不存在,说明理由;(3)证明:f(x)=x3-ax-1的图象不可能总在直线y=a的上方.(1)解由已知=3x2-a,∵f(x)在(-∞,+∞)上是单调增函数,∴=3x2-a≥0在(-∞,+∞)上恒成立,即a≤3x2对x∈R恒成立.∵3x2≥0,∴只需a≤0,又a=0时,=3x2≥0,故f(x)=x3-1在R上是增函数,则a≤0.(2)解由=3x2-a≤0在(-1,1)上恒成立,得a≥3x2,x∈(-1,1)恒成立.∵-14、∴3x2<3,∴只需a≥3.当a=3时,=3(x2-1),在x∈(-1,1)上,<0,即f(x)在(-1,1)上为减函数,∴a≥3.故存在实数a≥3,使f(x)在(-1,1)上单调递减.(3)证明∵f(-1)=a-25、x2+bx+c,得=3x2+2ax+b,当x=1时,切线l的斜率为3,可得2a+b=0①当x=时,y=f(x)有极值,则=0,可得4a+3b+4=0②由①②解得a=2,b=-4.由于切点的横坐标为x=1,∴f(1)=4.∴1+a+b+c=4.∴c=5.(2)由(1)可得f(x)=x3+2x2-4x+5,∴=3x2+4x-4,令=0,得x=-2,x=.例1.已知f(x)=ex-ax-1.(1)求f(x)的单调增区间;(2)若f(x)在定义域R内单调递增,求a的取值范围;(3)是否存在a,使f(6、x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a的值;若不存在,说明理由.解:=ex-a.(1)若a≤0,=ex-a≥0恒成立,即f(x)在R上递增.若a>0,ex-a≥0,∴ex≥a,x≥lna.∴f(x)的单调递增区间为(lna,+∞).(2)∵f(x)在R内单调递增,∴≥0在R上恒成立.∴ex-a≥0,即a≤ex在R上恒成立.∴a≤(ex)min,又∵ex>0,∴a≤0.(3)方法一由题意知ex-a≤0在(-∞,0]上恒成立.∴a≥ex在(-∞,0]上恒成立.∵ex在(7、-∞,0]上为增函数.∴x=0时,ex最大为1.∴a≥1.同理可知ex-a≥0在[0,+∞)上恒成立.∴a≤ex在[0,+∞)上恒成立.∴a≤1,∴a=1.方法二由题意知,x=0为f(x)的极小值点.∴=0,即e0-a=0,∴a=1.变式训练1.已知函数f(x)=x3-ax-1.(1)若f(x)在实数集R上单调递增,求实数a的取值范围;(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的取值范围;若不存在,说明理由;(3)证明:f(x)=x3-ax-1的图象不可能总在直线y=a8、的上方.(1)解由已知=3x2-a,∵f(x)在(-∞,+∞)上是单调增函数,∴=3x2-a≥0在(-∞,+∞)上恒成立,即a≤3x2对x∈R恒成立.∵3x2≥0,∴只需a≤0,又a=0时,=3x2≥0,故f(x)=x3-1在R上是增函数,则a≤0.(2)解由=3x2-a≤0在(-1,1)上恒成立,得a≥3x2,x∈(-1,1)恒成立.∵-1
4、∴3x2<3,∴只需a≥3.当a=3时,=3(x2-1),在x∈(-1,1)上,<0,即f(x)在(-1,1)上为减函数,∴a≥3.故存在实数a≥3,使f(x)在(-1,1)上单调递减.(3)证明∵f(-1)=a-25、x2+bx+c,得=3x2+2ax+b,当x=1时,切线l的斜率为3,可得2a+b=0①当x=时,y=f(x)有极值,则=0,可得4a+3b+4=0②由①②解得a=2,b=-4.由于切点的横坐标为x=1,∴f(1)=4.∴1+a+b+c=4.∴c=5.(2)由(1)可得f(x)=x3+2x2-4x+5,∴=3x2+4x-4,令=0,得x=-2,x=.例1.已知f(x)=ex-ax-1.(1)求f(x)的单调增区间;(2)若f(x)在定义域R内单调递增,求a的取值范围;(3)是否存在a,使f(6、x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a的值;若不存在,说明理由.解:=ex-a.(1)若a≤0,=ex-a≥0恒成立,即f(x)在R上递增.若a>0,ex-a≥0,∴ex≥a,x≥lna.∴f(x)的单调递增区间为(lna,+∞).(2)∵f(x)在R内单调递增,∴≥0在R上恒成立.∴ex-a≥0,即a≤ex在R上恒成立.∴a≤(ex)min,又∵ex>0,∴a≤0.(3)方法一由题意知ex-a≤0在(-∞,0]上恒成立.∴a≥ex在(-∞,0]上恒成立.∵ex在(7、-∞,0]上为增函数.∴x=0时,ex最大为1.∴a≥1.同理可知ex-a≥0在[0,+∞)上恒成立.∴a≤ex在[0,+∞)上恒成立.∴a≤1,∴a=1.方法二由题意知,x=0为f(x)的极小值点.∴=0,即e0-a=0,∴a=1.变式训练1.已知函数f(x)=x3-ax-1.(1)若f(x)在实数集R上单调递增,求实数a的取值范围;(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的取值范围;若不存在,说明理由;(3)证明:f(x)=x3-ax-1的图象不可能总在直线y=a8、的上方.(1)解由已知=3x2-a,∵f(x)在(-∞,+∞)上是单调增函数,∴=3x2-a≥0在(-∞,+∞)上恒成立,即a≤3x2对x∈R恒成立.∵3x2≥0,∴只需a≤0,又a=0时,=3x2≥0,故f(x)=x3-1在R上是增函数,则a≤0.(2)解由=3x2-a≤0在(-1,1)上恒成立,得a≥3x2,x∈(-1,1)恒成立.∵-1
5、x2+bx+c,得=3x2+2ax+b,当x=1时,切线l的斜率为3,可得2a+b=0①当x=时,y=f(x)有极值,则=0,可得4a+3b+4=0②由①②解得a=2,b=-4.由于切点的横坐标为x=1,∴f(1)=4.∴1+a+b+c=4.∴c=5.(2)由(1)可得f(x)=x3+2x2-4x+5,∴=3x2+4x-4,令=0,得x=-2,x=.例1.已知f(x)=ex-ax-1.(1)求f(x)的单调增区间;(2)若f(x)在定义域R内单调递增,求a的取值范围;(3)是否存在a,使f(
6、x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a的值;若不存在,说明理由.解:=ex-a.(1)若a≤0,=ex-a≥0恒成立,即f(x)在R上递增.若a>0,ex-a≥0,∴ex≥a,x≥lna.∴f(x)的单调递增区间为(lna,+∞).(2)∵f(x)在R内单调递增,∴≥0在R上恒成立.∴ex-a≥0,即a≤ex在R上恒成立.∴a≤(ex)min,又∵ex>0,∴a≤0.(3)方法一由题意知ex-a≤0在(-∞,0]上恒成立.∴a≥ex在(-∞,0]上恒成立.∵ex在(
7、-∞,0]上为增函数.∴x=0时,ex最大为1.∴a≥1.同理可知ex-a≥0在[0,+∞)上恒成立.∴a≤ex在[0,+∞)上恒成立.∴a≤1,∴a=1.方法二由题意知,x=0为f(x)的极小值点.∴=0,即e0-a=0,∴a=1.变式训练1.已知函数f(x)=x3-ax-1.(1)若f(x)在实数集R上单调递增,求实数a的取值范围;(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的取值范围;若不存在,说明理由;(3)证明:f(x)=x3-ax-1的图象不可能总在直线y=a
8、的上方.(1)解由已知=3x2-a,∵f(x)在(-∞,+∞)上是单调增函数,∴=3x2-a≥0在(-∞,+∞)上恒成立,即a≤3x2对x∈R恒成立.∵3x2≥0,∴只需a≤0,又a=0时,=3x2≥0,故f(x)=x3-1在R上是增函数,则a≤0.(2)解由=3x2-a≤0在(-1,1)上恒成立,得a≥3x2,x∈(-1,1)恒成立.∵-1
此文档下载收益归作者所有