扬州大学高等代数课件北大三版--第三章线性方程组.ppt

扬州大学高等代数课件北大三版--第三章线性方程组.ppt

ID:58785685

大小:1.54 MB

页数:91页

时间:2020-10-03

扬州大学高等代数课件北大三版--第三章线性方程组.ppt_第1页
扬州大学高等代数课件北大三版--第三章线性方程组.ppt_第2页
扬州大学高等代数课件北大三版--第三章线性方程组.ppt_第3页
扬州大学高等代数课件北大三版--第三章线性方程组.ppt_第4页
扬州大学高等代数课件北大三版--第三章线性方程组.ppt_第5页
资源描述:

《扬州大学高等代数课件北大三版--第三章线性方程组.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第三章线性方程组学时:18学时。教学手段:课堂讲授与学生自学讨论相结合,课堂练习和课后演练习题相结合,教师辅导答疑。基本内容和教学目的:基本内容:本章的基本内容是线性方程组理论,向量空间的基本理论以及几何空间平面和直线的简单性质。教学目的:1.使学生准确理解线性方程组的全部理论和向量空间的线性相关性理论,2.熟练地掌握线性方程组的解法,线性方程组有解的充分必要条件及其线性方程组解的结构。本章的重点和难点:用消元法解线性方程组,线性方程组解状况的判定定理及结构定理,向量组的线性相关性理论,线性空间的基础理论。1课件§3.1消元法2课件对一般

2、线性方程组—(1)当m=n,且系数行列式时,我们知方程组(1)有唯一解,其解由Gramer法则给出。但是若此时D=0,我们无法知道此时方程组是有解,还是无解。同时,当时,我们也没有解此方程组(1)的有效方法。因此我们有必要对一般线性方程3课件组(1)进行研究。在中学代数中,我们曾用加减消元法和代入消元法来解二元、三元线性方程组。实际上用加减消元法比用行列式解方程组更具有普遍性。下面考虑解线性方程组:解方程组:把未知量系数和常数按原顺序写成下表→把第1个方程分别乘以(-2)、(-1)加到第2个、3个方程把第1行分别乘以(-2)、(-1)加到

3、第2、3行→4课件把第3个方程分别乘以(-4)、1加到第2个、1个方程把第3行分别乘以(-4)、1加到第2、1行→把第2个方程与第3个方程互换位置把第2行与第3行互换位置→分别把第1个方程和第3个方程乘以和分别用和乘第1行和第3行→5课件把第3个方程分别乘以(-1)、1加到第1、2个方程分别把把第3行乘以(-1)、1加到第1、2行→在用消元法解线性方程组时我们实际上是对方程组进行如下三种变换:用一个数乘某个方程的两边加到另一方程上;用一个非零数乘一个方程的两边;互换两个方程的位置。这三种变换总称为线性方程组的初等变换。如果把方程组写成“数

4、表”(矩阵)的形式,则解方程组就相当于对“数表”(矩阵)进行以下三种变换:用一个数乘矩阵的某一行加到另一行上;用一个非零数乘矩阵的某一行;6课件互换两行的位置。这三种变换被称为矩阵的初等行变换。从上面可以看出,解线性方程组的问题可以转化成对由方程组的未知量系数和常数项所排成的一个“数表”进行相应的“变换”,从而得到方程组的解。这个数表就称为矩阵。抛开具体的背景,下面引进矩阵的定义和它的初等变换。定义1(矩阵):数域上个元素排成形如下数表称为矩阵的或称为数域上的m行n列矩阵,简称阶矩阵,记为。元素,i称为元素所在行的行下标,j称为元素所在列

5、的当m=n时,矩阵亦称为方阵。列下标。7课件若,则称为矩阵A的行列式,记为注意行列式与矩阵在形式上与本质上的区别。定义2(矩阵的初等变换):以下三种变换称为矩阵的初等变换:用一个数乘矩阵的某一行(列)加到另一行(列)上;(消法变换)用一个非零数乘矩阵的某一行(列);(倍法变换)交换矩阵中某两行(列)的位置。(换法变换)为了利用矩阵的行初等变换解线性方程组,我们要解决以下问题:一个线性方程组经初等变换后所得线性方程组是否与原方程组同解。8课件证明:对第(1)种初等变换证明之。由方程组未知量系数按原来的顺序组成的矩阵,称为方程组的系数矩阵,记

6、为A。由方程组未知量系数和常数组成的矩阵称为方程组的增广矩阵,记为对方程组进行初等变换,其实质就是对方程组中未知量系数和常数项组成的矩阵(称为增广矩阵)进行相应的初等变换,因此由定理3.1.1,我们有定理3.1.2:对线性方程组(1)的增广矩阵进行行初等变换化为,则以为增广矩阵的线性方程组(2)与(1)同解。由前面的讨论知,对一个线性方程组施行初等变换,相当于对它的增广矩阵施行一个对应的行初等变换,那么我们要问:一个矩阵在行初等变换下可以化为怎样的简单形式?方程组的初等变换把一个线性方程组变为一个定理3.1.1:与它同解的线性方程组。9课

7、件定理3.1.3:一个矩阵A,通过行初等变换及列换法变换可化为一下阶梯形这里。更进一步,通过行初等变换,可化为10课件所谓阶梯形矩阵是指:从它们的任一行看,从第一个元素起至该行的第一个非零元素止,它们所在位置的下方元素全为零;若该行全为零,则它的下方元素也全为零。证明:若A=0,则A已成阶梯形,若,则A至少有一个元素不为0,不妨设,(否则,设,我们可经行、列变换,使位于左上角)。把第一行分别乘以加到11课件第i行,则A化为用乘第一行得:对中的右下角矩阵类似考虑,若其为0,12课件则结论成立;若其不为0,不妨设,用乘第2行加到第i(i=3,

8、…,m)行,然后用乘第二行得:如此作下去,直到A化为阶梯形B为止。对B进行一系列行的消法变换,则可以把B化为C。定理中的r是矩阵A的秩,是一个确定的数,其意义以后再研究。13课件定理3.1.4

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。