资源描述:
《概率论完整PPT课件第29讲.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、引言上一讲,我们介绍了总体、样本、简单随机样本、统计量和抽样分布的概念,介绍了统计中常用的三大分布,给出了几个重要的抽样分布定理.它们是进一步学习统计推断的基础.总体样本统计量描述作出推断研究统计量的性质和评价一个统计推断的优良性,完全取决于其抽样分布的性质.随机抽样现在我们来介绍一类重要的统计推断问题参数估计问题是利用从总体抽样得到的信息来估计总体的某些参数或者参数的某些函数.参数估计估计废品率估计新生儿的体重估计湖中鱼数……估计降雨量在参数估计问题中,假定总体分布形式已知,未知的仅仅是一个或几个参数.这类问题称为参数估计.参数估计问题的一般提法X1,X
2、2,…,Xn要依据该样本对参数作出估计,或估计的某个已知函数.现从该总体抽样,得样本设有一个统计总体,总体的分布函数向量).为F(x,),其中为未知参数(可以是参数估计点估计区间估计(假定身高服从正态分布)设这5个数是:1.651.671.681.781.69估计为1.68,这是点估计.这是区间估计.估计在区间[1.57,1.84]内,假如我们要估计某队男生的平均身高.现从该总体选取容量为5的样本,我们的任务是要根据选出的样本(5个数)求出总体均值的估计.而全部信息就由这5个数组成.一、点估计概念及讨论的问题例1已知某地区新生婴儿的体重X~随机抽查100个
3、婴儿…得100个体重数据10,7,6,6.5,5,5.2,…呢?据此,我们应如何估计和而全部信息就由这100个数组成.为估计,我们需要构造出适当的样本的函数T(X1,X2,…Xn),每当有了样本,就代入该函数中算出一个值,用来作为的估计值.把样本值代入T(X1,X2,…Xn)中,得到的一个点估计值.T(X1,X2,…Xn)称为参数的点估计量,请注意,被估计的参数是一个未知常数,而估计量T(X1,X2,…Xn)是一个随机变量,是样本的函数,当样本取定后,它是个已知的数值,这个数常称为的估计值.使用什么样的统计量去估计?可以用样本均值;也可以用样本中位数;还可
4、以用别的统计量.问题是:我们知道,服从正态分布由大数定律,自然想到把样本体重的平均值作为总体平均体重的一个估计.类似地,用样本体重的方差.用样本体重的均值样本体重的平均值样本均值是否是的一个好的估计量?(2)怎样决定一个估计量是否比另一个估计量“好”?样本方差是否是的一个好的估计量?这就需要讨论以下几个问题:(1)我们希望一个“好的”估计量具有什么特性?(3)如何求得合理的估计量?那么要问:二、估计量的优良性准则在介绍估计量优良性的准则之前,我们必须强调指出:评价一个估计量的好坏,不能仅仅依据一次试验的结果,而必须由多次试验结果来衡量.这是因为估计量是样本
5、的函数,是随机变量.因此,由不同的观测结果,就会求得不同的参数估计值.因此一个好的估计,应在多次试验中体现出优良性.常用的几条标准是:1.无偏性2.有效性3.相合性这里我们重点介绍前面两个标准.估计量是随机变量,对于不同的样本值会得到不同的估计值.我们希望估计值在未知参数真值附近摆动,而它的期望值等于未知参数的真值.这就导致无偏性这个标准.1.无偏性则称为的无偏估计.设是未知参数的估计量,若例如,用样本均值作为总体均值的估计时,虽无法说明一次估计所产生的偏差,但这种偏差随机地在0的周围波动,对同一统计问题大量重复使用不会产生系统偏差.无偏性是对估计量的一个
6、常见而重要的要求.无偏性的实际意义是指没有系统性的偏差.所以无偏估计以方差小者为好,这就引进了有效性这一概念.的大小来决定二者和一个参数往往有不止一个无偏估计,若和都是参数的无偏估计量,比较我们可以谁更优.由于2.有效性D()7、们主要介绍前面两种方法.1.矩估计法其基本思想是用样本矩估计总体矩.理论依据:或格列汶科定理(见教材177页)它是基于一种简单的“替换”思想建立起来的一种估计方法.是英国统计学家K.皮尔逊最早提出的.大数定律记总体k阶矩为样本k阶矩为用相应的样本矩去估计总体矩的估计方法就称为矩估计法.记总体k阶中心矩为样本k阶中心矩为设总体的分布函数中含有k个未知参数都是这k个参数的函数,记为:,那么它的前k阶矩一般i=1,2,…,k从这k个方程中解出j=1,2,…,k那么用诸的估计量Ai分别代替上式中的诸,即可得诸的矩估计量:j=1,2,…,k解:由矩法,样本矩总体矩从
8、中解得的矩估计.即为数学期望是一阶原点矩例2设总体X的概率密度为是