欢迎来到天天文库
浏览记录
ID:58641162
大小:1.69 MB
页数:15页
时间:2020-10-12
《全等三角形复习课件_ppt.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、三角形全等的判定(复习)一.全等三角形:1:什么是全等三角形?一个三角形经过哪些变化可以得到它的全等形?2:全等三角形有哪些性质?能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到它的全等形。(1)全等三角形的对应边相等、对应角相等。(2)全等三角形的周长相等、面积相等。(3)全等三角形的对应边上的中线、角平分线、高线分别相等。ACEBD21如果△ABD≌△ACE,∠1与∠2相等吗?解∵△ABD≌△ACE(已知)∴∠DAB=∠EAC(全等三角形的对应角相等)∴∠DAB-∠BAE=∠
2、EAC-∠BAE即∠1=∠2知识回顾:一般三角形全等的条件:1.定义(重合)法;2.SSS;3.SAS;4.ASA;5.AAS.直角三角形全等特有的条件:HL.包括直角三角形不包括其它形状的三角形解题中常用的4种方法方法指引证明两个三角形全等的基本思路:(1):已知两边----找第三边(SSS)找夹角(SAS)(2):已知一边一角---已知一边和它的邻角找是否有直角(HL)已知一边和它的对角找这边的另一个邻角(ASA)找这个角的另一个边(SAS)找这边的对角(AAS)找一角(AAS)已知角是直角,找一边(HL
3、)(3):已知两角---找两角的夹边(ASA)找夹边外的任意边(AAS)知识应用:2.要说明△ABC和△DEF全等,已知条件为AB=DE,∠A=∠D,不需要的条件为()∠B=∠EB.∠C=∠FC.AC=DFD.BC=EF3.要说明△ABC和△DEF全等,已知∠A=∠D,∠B=∠E,则不需要的条件是()∠C=∠FB.AB=DEC.AC=EFD.BC=EFDA4.如图,AM=AN,BM=BN说明△AMB≌△ANB的理由解:在△AMB和△ANB中∴≌()AN已知BMABAB△ABM△ABNSSS5.已知,△ABC和
4、△ECD都是等边三角形,且点B,C,D在一条直线上求证:BE=ADEDCAB变式:以上条件不变,将△ABC绕点C旋转一定角度(大于零度而小于六十度),以上的结论还成立吗?证明:∵△ABC和△ECD都是等边三角形∴AC=BCDC=EC∠BCA=∠DCE=60°∴∠BCA+∠ACE=∠DCE+∠ACE即∠BCE=∠DCA在△ACD和△BCE中AC=BC∠BCE=∠DCADC=EC∴△ACD≌△BCE(SAS)∴BE=AD6:如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?4321EDCB
5、A解:AC=AD理由:在△EBC和△EBD中∠1=∠2∠3=∠4EB=EB∴△EBC≌△EBD(AAS)∴BC=BD在△ABC和△ABD中AB=AB∠1=∠2BC=BD∴△ABC≌△ABD(SAS)∴AC=AD练习7:如图,已知,AB∥DE,AB=DE,AF=DC。请问图中有那几对全等三角形?请任选一对给予证明。FEDCBA答:△ABC≌△DEF证明:∵AB∥DE∴∠A=∠D∵AF=DC∴AF+FC=DC+FC∴AC=DF在△ABC和△DEF中AC=DF∠A=∠DAB=DE∴△ABC≌△DEF(SAS)角的内
6、部到角的两边的距离相等的点在角的平分线上。用法:∵QD⊥OA,QE⊥OB,QD=QE.∴点Q在∠AOB的平分线上.角的平分线上的点到角的两边的距离相等.用法:∵QD⊥OA,QE⊥OB,点Q在∠AOB的平分线上∴QD=QE二.角的平分线:1.角平分线的性质:2.角平分线的判定:1、如图:在△ABC中,∠C=900,AD平分∠BAC,DE⊥AB交AB于E,BC=30,BD:CD=3:2,则DE=。12cABDE2.已知:如图21,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,DB=DC求证:EB=FC3.如图
7、,已知△ABC的外角∠CBD和∠BCE的平分线相交于点F,求证:点F在∠DAE的平分线上.证明:过点F作FG⊥AE于G,FH⊥AD于H,FM⊥BC于MGHM∵点F在∠BCE的平分线上,FG⊥AE,FM⊥BC∴FG=FM又∵点F在∠CBD的平分线上,FH⊥AD,FM⊥BC∴FM=FH∴FG=FH∴点F在∠DAE的平分线上总结提高学习全等三角形应注意以下几个问题:(1):要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3):要记
8、住“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4):时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”
此文档下载收益归作者所有