资源描述:
《第十九章--一次函数-小结与复习ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、小结与复习第十九章一次函数1.叫变量,叫常量.2.函数定义:数值发生变化的量数值始终不变的量在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.一、函数一、知识梳理(所用方法:描点法)3.函数的图象:列表法解析式法图象法.4.函数的三种表示方法:列表、描点、连线一次函数一般地,如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.正比例函数特别地,当b=____时,一次函数y=kx+b变为y=___(k为常数,k≠0),这时y叫做x的正比例函数.0kx二、一次函数1.一次函数
2、与正比例函数的概念2.分段函数当自变量的取值范围不同时,函数的解析式也不同,这样的函数称为分段函数.函数字母系数取值(k>0)图象经过的象限函数性质y=kx+b(k≠0)b>0y随x增大而增大b=0b<0第一、三象限第一、二、三象限第一、三、四象限3.一次函数的图象与性质函数字母系数取值(k<0)图象经过的象限函数性质y=kx+b(k≠0)b>0y随x增大而减小b=0b<0第一、二、四象限第二、四象限第二、三、四象限求一次函数解析式的一般步骤:(1)先设出函数解析式;(2)根据条件列关于待定系数的方程(组);(3)解方程(组)求出解析式中未知的系数;(4)把求出的系数
3、代入设的解析式,从而具体写出这个解析式.这种求解析式的方法叫待定系数法.4.由待定系数法求一次函数的解析式求ax+b=0(a,b是常数,a≠0)的解.x为何值时,函数y=ax+b的值为0?从“数”的角度看求ax+b=0(a,b是常数,a≠0)的解.求直线y=ax+b,与x轴交点的横坐标.从“形”的角度看(1)一次函数与一元一次方程5.一次函数与方程、不等式解不等式ax+b>0(a,b是常数,a≠0).x为何值时,函数y=ax+b的值大于0?解不等式ax+b>0(a,b是常数,a≠0).求直线y=ax+b在x轴上方的部分(射线)所对应的横坐标的取值范围.从“数”的角度看
4、从“形”的角度看(2)一次函数与一元一次不等式一般地,任何一个二元一次方程都可以转化为一次函数y=kx+b(k、b为常数,且k≠0)的形式,所以每个二元一次方程都对应一个一次函数,也对应一条直线.(3)一次函数与二元一次方程组方程组的解对应两条直线交点的坐标.1.下列图形中的曲线不表示是的函数的是()vx0Dvx0Avx0CyOBxC一函数的有关概念及图象二、典型题目2.函数中,自变量x的取值范围是()A.x>3B.x<3C.x≤3D.x≥-3B3.星期天下午,小强和小明相约在某公交车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.
5、图中折线表示小强离开家的路程y(千米)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2千米B.小强在公共汽车站等小明用了10分钟C.公交车的平均速度是34千米/小时D.小强乘公交车用了30分钟Cx(分)y(千米)4.已知一次函数y=(m-4)x+3-m,当m为何值时,(1)Y随x值增大而减小;(2)直线过原点;(3)直线与直线y=-2x平行;(4)直线不经过第一象限;(5)直线与x轴交于点(2,0)(6)直线与y轴交于点(0,-1)(7)直线与直线y=2x-4交于点(a,2)m<4m=23≤m<4m=3m=5m=-4m=5.5二
6、一次函数的图象与性质5.已知一次函数y=kx+2b+4的图像经过点(-1,-3),k满足等式
7、k-3
8、-4=0,且y随x的增大而减小,求这个一次函数的解析式。解:把x=-1,y=-3代入y=kx+2b+4得-7=-k+2b。∵
9、k-3
10、-4=0又∵y随x的增大而减小∴k<0∴k=-1把k=-7代入-7=-k+2b得b=-4∴这个一次函数的解析式为y=-x-4三一次函数与方程、不等式6.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()yxOy1=x+by2=kx+4PA.x>﹣2B.x>0C.x>1
11、D.x<1【分析】观察图象,两图象交点为P(1,3),当x>1时,y1在y2上方,据此解题即可.【答案】C.13C7.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.B.C.D.P(1,1)11233-1O2yx-1D8.如图,直线AB与y轴,x轴交点分别为A(0,2)B(4,0)问题1:求直线AB的解析式及△AOB的面积.A2O4Bxy问题2:当x满足什么条件时,y>0,y=0,y<0,0<y<2当x<4时,y>0,当x=4时,y=0,当x>4时,y<0,当0<x<4时,0<