浅谈牛顿、莱布尼茨度微积分的贡献

浅谈牛顿、莱布尼茨度微积分的贡献

ID:5850825

大小:38.50 KB

页数:4页

时间:2017-12-26

浅谈牛顿、莱布尼茨度微积分的贡献_第1页
浅谈牛顿、莱布尼茨度微积分的贡献_第2页
浅谈牛顿、莱布尼茨度微积分的贡献_第3页
浅谈牛顿、莱布尼茨度微积分的贡献_第4页
资源描述:

《浅谈牛顿、莱布尼茨度微积分的贡献》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、浅谈牛顿、莱布尼兹对微积分的贡献姓名:马志霞学号:200971010129班级:09级数学(1)班摘要本文主要论述了微积分的产生、牛顿和莱布尼茨对微积分的贡献以及他们创立微积分的比较。关键词牛顿莱布尼兹微积分产生贡献比较一、微积分的产生微积分是微分学和积分学的总称。微分学的主要内容包括:极限理论、导数、微分等,积分学的主要内容包括:定积分、不定积分等。如今,微积分已成为基本的数学工具而被广泛地应用于自然科学的各个领域。以下四种主要类型的问题:第一类:变速运动求即时速度的问题。第二类:求曲线的切线的问题。第三类:求函数的最大值和最小值问题。第四类:求

2、曲线长、曲边梯形面积、不规则物体的体积、物体的重心、压强等问题。这些科学问题需要解决是促使微积分产生的因素。许多著名的科学家都为解决上述几类问题作了大量的研究工作,英国伟大的科学家牛顿和德国数学家莱布尼茨分把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。1686年,莱布尼茨发表了第一篇积分学的文献。他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现在我们使用的微积分通用符号就是当时莱布尼茨选用的。微积分学的创立,极大地推动了数学的发展,对过去很多束手无策的初等数学问

3、题运用微积分就会迎刃而解。微积分学不但极大的推动了数学的发展,而且也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展,并在这些学科中应用越来越广泛。二、莱布尼兹对微积分的贡献莱布尼兹创立微积分首先是出于几何问题的思考。1673年,他因在帕斯卡的有关论文中“突然看到一束光明”,而提出了自己的“微分三角形”理论。借助于这种无限小三角形,他迅速地、毫无困难地了建立大量定理,其中包括后来“在巴罗和格里高利的著作中见到的几乎所有定理”。在对微分特征三角形的研究中,莱布尼兹逐渐认识到了什么是求曲线切线

4、和求曲线下面积的实质,并发现了这两类问题的互逆关系。在1666年,莱布尼兹便在序列的求和运算与求差运算间发现了它们的互逆关系。从1672年开始,莱布尼兹将他对数列研究的结果与微积分运算联系起来。他通过把曲线的纵坐标想象成一组无穷序列,得出了“求切线不过是求差,求积不过是求和”的结论。他引进了微分记号dx来表示两相邻x的值的差,并给出幂函数的微分与积分公式。不久,他又给出了计算复合函数微分的链式法则。1677年,莱布尼兹在一篇手稿中明确陈述了微积分基本定理。1684年莱布尼兹发表了他的第一篇微分学论文《新方法》,该文是莱布尼兹对自己1673年以来微分

5、学研究的概括,其中定义了微分并广泛采用了微分记号,并明确陈述了函数和、差、积、商、乘幂与方根的微分公式。他还得出了复合函数的链式微分法则,以及后来又将乘积微分的“莱布尼兹法则”推广到了高阶情形,这些表明莱布尼兹非常重视微积分的形式运算法则和公式系统。《新方法》还包含了微分法在求极值、拐点以及光学等方面的广泛应用。1686年,莱布尼兹又发表了他的第一篇积分学论文《深奥的几何与不可分量及无限的分析》。这篇论文初步论述了积分或求积问题与微分或切线问题的互逆关系,说明了他的方法和符号,积分号"∫"第一次出现于印刷出版物上,对符号的精心选择,是莱布尼兹微积分

6、的一大特点。他引进的符号体现了微分与积分的“差”与“和”的实质,后来获得普遍接受并沿用至今。 三、牛顿对微积分的贡献牛顿对微积分问题的研究始于他对笛卡尔圆法发生兴趣而开始寻找更好的切线求法。起初他的研究是静态的无穷小量方法,像费尔马那样把变量看成是无穷小元素的集合。1669年,他完成了第一篇有关微积分的论文。当时在他的朋友中间散发传阅,直到42年后的1711年才正式出版。牛顿在论文中不仅给出了求瞬时变化率的一般方法,而且证明了面积可由求变化率的逆过程得到。这一事实是牛顿创立微积分的标志。接着,牛顿研究变量流动生成法,认为变量是由点、线或面的连续运动

7、产生的,因此,他把变量叫作流量,把变量的变化率叫做流数。牛顿第二阶段的工作,主要体现在成书于1671年的一本论著《流数法和无穷级数》中。书中叙述了微积分基本定理,并对微积分思想作了广泛而更明确的说明。但这篇论著直到1736年才公开发表。牛顿微积分研究的第三阶段用的是最初比和最后比的方法,否定了以前自己认为的变量是无穷小元素的静止集合,不再强调数学量是由不可分割的最小单元构成,而认为它是由几何元素经过连续运动生成的,不再认为流数是两个实无限小量的比,而是初生量的最初比或消失量的最后比,这就从原先的实无限小量观点进到量的无限分割过程即潜无限观点上去。这

8、是他对初期微积分研究的修正和完善。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。