资源描述:
《立体几何证明题精选.pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯立体几何大题证明解答题(共10道题)1.(2014四川,18,12分)(本小题满分12分)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形.(Ⅰ)若AC⊥BC,证明:直线BC⊥平面ACC1A1;(Ⅱ)设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.2.(2014江苏,16,14分)如图,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA⊥AC,PA=
2、6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3.(2014山东,18,12分)如图,四棱锥P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.4.(2014天津,17,13分)如图,四棱锥P-ABCD的底面ABCD是平行四边形,BA=BD=,AD=2,PA=PD=,E,F分别是棱AD,PC的中点
3、.(Ⅰ)证明EF∥平面PAB;(Ⅱ)证明平面PBC⊥平面ABCD;2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5.(2014北京,17,14分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(Ⅰ)求证:平面ABE⊥平面B1BCC1;(Ⅱ)求证:C1F∥平面ABE;(Ⅲ)求三棱锥E-ABC的体积.6.(2014课标Ⅱ,18,12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD
4、的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P-ABD的体积V=,求A到平面PBC的距离.3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7.(河北省衡水中学2014届高三下学期二调)如图,在四棱锥中,,,平面,为的中点,.(I)求证:∥平面;(II)求四面体的体积.8.【2012高考安徽文19】(本小题满分12分)如图,长方体ABCDA1B1C1D1中,底面A1B1C1D1是正方形,O是BD的中点,E是棱AA1上任意一点。(Ⅰ)证明:BDEC1;(Ⅱ)如果AB=
5、2,AE=2,OEEC1,,求AA1的长。4⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9.【2012高考山东文19】(本小题满分12分)如图,几何体EABCD是四棱锥,△ABD为正三角形,CBCD,ECBD.(Ⅰ)求证:BEDE;(Ⅱ)若∠BCD120,M为线段AE的中点,求证:DM∥平面BEC.10.【2012高考广东文18】本小题满分13分)如图5所示,在四棱锥PABCD中,AB平面PAD,AB//CD,PDAD,E1是PB的中点,F是CD上的点且DFAB,PH为△PAD中AD边上
6、的高.2(1)证明:PH平面ABCD;(2)若PH1,AD2,FC1,求三棱锥EBCF的体积;(3)证明:EF平面PAB.5