资源描述:
《有关组合矩阵论中图谱与符号模式矩阵的研究.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、有关组合矩阵论中图谱与符号模式矩阵的研究有关组合矩阵论中图谱与符号模式矩阵的研究【摘要】:组合矩阵论是一个近20余年来兴起并迅速发展的一个数学分支.它用矩阵论和线性代数来证明组合定理及对组合结构进行描述和分类.同时,也把组合论的思想和论证方法用于矩阵的精细分析及揭示阵列的内在组合性质.对图谱理论和符号模式矩阵的研究是组合矩阵论的重要组成部分.图谱理论是图论研究的一个非常活跃而又重要的研究领域,它在量子化学、统计力学、计算机科学、通信网络以及信息科学中均有着广泛的应用.在图谱理论中,为了研究图的性质,人们引入了各种各样的矩阵,诸如图的邻接矩阵、关联矩阵、拉普拉斯矩阵、无
2、符号拉普拉斯矩阵、距离矩阵等等.这些矩阵与图的结构都有着密切的联系.图谱理论的一个主要问题就是研究图的性质能否以及如何由这些矩阵的代数性质(例如谱半径,谱唯一性,谱展,能量等等)反映出来.符号模式矩阵的研究在经济学、生物学、化学和社会学以及理论计算机科学中具有广泛的实际应用背景.对符号模式矩阵的研究包括符号模式矩阵的幂序列性质,可解性问题,稳定性问题等.本论文主要涉及的是对符号模式矩阵的幂序列性质的研究.在图谱理论方面,本论文主要研究了图的邻接谱、无符号拉普拉斯谱(Q-谱)、距离谱.主要对图的邻接矩阵、无符号拉普拉斯矩阵(Q-矩阵)、距离矩阵的谱半径、最小根以及谱展进
3、行研究,试图建立它们与图的结构参数之间的一些关系;在符号模式矩阵方而,我们刻画了一些特殊图类的Lewin指数极图,刻画了一些本原非可幂符号模式矩阵的基集和达到基的上界的极图,继邵嘉裕老师、柳柏濂、尤利华和苗正科老师等对一般的本原非可幂符号模式矩阵的基集的研究成果和研究工作以及本人在硕士论文中的一些工作,给出一些关于基的界,同时证明了在基集中有一些新的问隔(“gaps”).本论文的主要内容如下:(一)在第一章中,我们首先回顾介绍了图论研究的背景和进展;接着介绍了一些图谱理论问题的研究背景和进展;最后介绍了符号模式矩阵的一些研究背景和进展.(二)在第二章中,我们研究n阶图
4、的邻接谱.我们先介绍了一些基本概念、记号和一些引理.接着在第二、三节,我们探讨图子式(Minor)与图的谱之间的关系,寻找图的拓扑性质与代数性质的内在联系,对禁用子图K2,3的图类和边数最多的外平面二部图图的给出了一些结构性的刻画,通过已有工具对这些图类的邻接谱半径进行研究,给出了一些比较好的上、下界,甚至刻画达到一些界的极图.在本章最后,我们讨论了直径给定的双圈图中最小根,并对达到最小根的极图给出了一些结构刻画.(三)在第三章中,我们研究n阶图的无符号拉普拉斯谱.我们在第一节中介绍了一些基本概念、记号和一些引理.在第二节中讨论一般图的Q-谱半径的界,给出了一些上、下
5、界并刻画了达到下界的极图.我们接着在第三、四节中讨论一些特殊图类的Q-谱半径的界,刻画了色数给定的图和θ-图类中达到Q-谱半径的上、界的极图.最后我们在第五节中考虑图的Q-谱的第二大根q2.刻画了q2=2的图;对n≥9阶连通非二部图,刻画了q2≤3的图;对n≥7阶连通二部图,刻画了q2≤3的图.我们证明了(i)如果n≥2,不存在n阶图G使得q2(G)∈((1,2)∪(3+(?)/2,2.7));(ii)如果n≥9,不存在n阶图G使得并q2(G)∈((1,3+(?)/2)∪(3+(?)/2,2.7)),确定了3是q2的最小极限点.(四)在第四章中,我们研究n阶图的距离谱
6、.在第一节中我们给出了几个增大或减小距离谱半径的移接变形定理,利用这些移接变形定理,对具有给定悬挂点数k的n阶简单连通图类,证明了具有最小距离谱半径的图是在一个n-k阶完全图的一点接k条悬挂边得到的图,具有最大距离谱半径的图是一个哑铃图.第二节中我们也给出了几个增大或减小距离谱半径的移接变形定理,利用这些移接变形定理,我们证明了Sn’(通过在星Sn的两个悬挂点之间加一条边得到)在所有的n阶单圈图中具有最小的距离谱半径;而Pn’(通过在K3的一点接一条悬挂路Pn-3得到)在所有的n阶单圈图中具有最大的距离谱半径.在本章最后,我们对般图的距离谱半径给出了较好的上、下界并刻
7、画了达到该上、下界的极图;研究了一般图的距离谱展(即距离矩阵的谱半径与最小特征值之差)的下界,证明了完全图Kn是n阶图中达到距离谱展下界的唯一极图,完全二部图K[n/2][n/2]是n阶二部图中达到距离谱展下界的唯一极图.(五)在第五章中,我们研究n阶符号模式矩阵的幂序列性质.我们在第一节中介绍了一些基本概念、记号和一些引理;在第二节中刻画了围长为2或3达到Lewin指数上界的极图;在第三节中刻画了恰好具有d个非零对角元的本原非可幂符号模式矩阵的基集和达到基集上界的弧最少的极图;在第四节中刻画了对角元全为零的零对称本原非可幂符号模式矩阵的基集和达到基