参数方程教案.docx

参数方程教案.docx

ID:57606440

大小:25.57 KB

页数:3页

时间:2020-08-28

参数方程教案.docx_第1页
参数方程教案.docx_第2页
参数方程教案.docx_第3页
资源描述:

《参数方程教案.docx》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、参数方程(复习课)一.考试要求(教学目标)1.理解参数方程的概念2.理解参数方程与普通方程的互化3.理解直线、圆及椭圆的参数方程4.理解参数方程的简单应用二。教学重点与难点重点:直线、圆及椭圆的参数方程以及直线和圆的参数方程中参数的几何意义难点:求动点的轨迹方程三.教学过程如下:(一)基本概念的性质1.参数方程的概念:一般地在平面直角坐标系中如果曲线C上任意一点P的坐标x和y都可以表示为某,,xf(t)t的每个允许值,由函数式xf(t)个变量t的函数,反过来,对于y所确定的yf(t)f(t)xf(t)点P(x,y)都在曲线C上,那么方程f(t)y叫

2、做曲线C的参数方程,变量t是参变量,简称参数。2.直线的参数方程:xx0tcosyy0(t为参数)tsin注:1.P0(x0,y0)为直线l上的定点,为直线的倾斜角2.参数t的几何意义:有向线段P0P的数量特别的当t=0时,对应点为定点P03.圆的参数方程:xx0rcos,为参数)y0(yrsin,注:1.(x0,y0)为圆心C,r为半径2.参数的几何意义:圆心C为顶点且与x轴同向的射线按逆时针方向旋转到圆是一点P所在半径成的角4.椭圆的参数方程:xacos,2,a0,b0ybsin0,(二)基础训练x24cos(参数)的圆心是1、圆C34sin,

3、半径是yx11t2、直线2(t为参数)的斜率和倾斜角分别是3ty323、参数方程x2pt2(t为参数)化一般方程是y2pt4、一个小虫从P(1,2)出发,已知它在x轴方向的分速度是3厘米/秒,在y轴方向的分速度是4厘米/秒,则小虫3秒后的位置坐标Q解:由题意知直线PQ的参数方程是Q(-8,14).(三)例题选讲例1将下列参数方程化普通方程x13t3代入得y2t0,其中时间t是参数,将t4txa(t1)x1sin(1)t(t为参数)(2)(为参数)ya(t1)ycos2t总结归纳常见消参方法:(1)代入法,求出t再代入另一式;(2)利用代数恒等式或

4、三角恒等式.例2已知P(x,y)是圆x2(y1)21上任意一点,若不等式xyc0恒成立,求c取值范围是变式:求椭圆x2y21上的点到直线3x4y640的最大距离和最小距离。2581x32t例3在直角坐标系xOy中,直线l的参数方程为2(t为参数),y52t2圆C方程为x5cos(为参数),已知直线和圆交与点A,B,y55sin若点P的坐标为(3,5),求PAPB注:要求A、B两点到P的距离之和或积,由参数的几何意义,即只要求

5、tA

6、+

7、tB

8、或

9、tA·tB

10、,求

11、AB

12、即求出

13、tA-tB

14、,运用韦达定理和直线的参数方程中t的几何意义即可,是解决直线

15、和二次曲线问题常用的方法之一.例4在圆x2y24上有定点A(2,0),以及两个动点B,C,且A,B,C按逆时针方向排列,BAC,求ABC的重心G(x,y)的轨迹的参数方程。y3BOAxC(四)课堂小结(1)参数方程的定义;(2)常见曲线的参数方程及期基本运用;(3)增强利用参数思想解决问题的意识和能力

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。