欢迎来到天天文库
浏览记录
ID:57590815
大小:351.50 KB
页数:20页
时间:2020-08-28
《 【数学】2019年黑龙江省伊春市中考真题(解析版).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019年黑龙江省伊春市中考数学试卷一、填空题(每题3分,满分30分)1.中国政府提出的“一带一路”倡议,近两年来为沿线国家创造了约180000个就业岗位.将数据180000用科学记数法表示为 .2.在函数y=中,自变量x的取值范围是 .3.如图,在四边形ABCD中,AD=BC,在不添加任何辅助线的情况下,请你添加一个条件 ,使四边形ABCD是平行四边形.4.在不透明的甲、乙两个盒子中装有除颜色外完全相同的小球,甲盒中有2个白球、1个黄球,乙盒中有1个白球、1个黄球,分别从每个盒中随机摸出1个
2、球,则摸出的2个球都是黄球的概率是 .5.若关于x的一元一次不等式组的解集为x>1,则m的取值范围是 .6.如图,在⊙O中,半径OA垂直于弦BC,点D在圆上且∠ADC=30°,则∠AOB的度数为 .7.若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是 .8.如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△PAB=S△PCD,则PC+PD的最小值为 .9.一张直角三角形纸片ABC,∠ACB=90°,AB=10,AC=6,点D为
3、BC边上的任一点,沿过点D的直线折叠,使直角顶点C落在斜边AB上的点E处,当△BDE是直角三角形时,则CD的长为 .10.如图,四边形OAA1B1是边长为1的正方形,以对角线OA1为边作第二个正方形OA1A2B2,连接AA2,得到△AA1A2;再以对角线OA2为边作第三个正方形OA2A3B3,连接A1A3,得到△A1A2A3;再以对角线OA3为边作第四个正方形,连接A2A4,得到△A2A3A4……记△AA1A2、△A1A2A3、△A2A3A4的面积分别为S1、S2、S3,如此下去,则S2019=
4、 .二、选择题(每题3分,满分30分)11.下列各运算中,计算正确的是( )A.a2+2a2=3a4B.b10÷b2=b5C.(m﹣n)2=m2﹣n2D.(﹣2x2)3=﹣8x612.下列图形是我国国产品牌汽车的标识,其中是中心对称图形的是( )A.B.C.D.13.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是( )A.6B.5C.4D.314.某班在阳光体育活动中,测试了五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据.在统计时,出现了一处错
5、误:将最低成绩写得更低了,则计算结果不受影响的是( )A.平均数B.中位数C.方差D.极差15.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A.4B.5C.6D.716.如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数y=上,顶点B在反比例函数y=上,点C在x轴的正半轴上,则平行四边形OABC的面积是( )A.B.C.4D.6
6、17.已知关于x的分式方程=1的解是非正数,则m的取值范围是( )A.m≤3B.m<3C.m>﹣3D.m≥﹣318.如图,矩形ABCD的对角线AC、BD相交于点O,AB:BC=3:2,过点B作BE∥AC,过点C作CE∥DB,BE、CE交于点E,连接DE,则tan∠EDC=( )A.B.C.D.19.某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有( )A.4种B.3种C.2种D.1种20.如图,在平行四边形
7、ABCD中,∠BAC=90°,AB=AC,过点A作边BC的垂线AF交DC的延长线于点E,点F是垂足,连接BE、DF,DF交AC于点O.则下列结论:①四边形ABEC是正方形;②CO:BE=1:3;③DE=BC;④S四边形OCEF=S△AOD,正确的个数是( )A.1B.2C.3D.4三、解答题(满分60分)21.(5分)先化简,再求值:(﹣)÷,期中x=2sin30°+1.22.(6分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4
8、,1)、B(4,4)均在格点上.(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标;(3)在(2)的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).23.(6分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A(3,0)、点B(﹣1,0),与y轴交于点C.(1)求拋物线的解析式;(2)过点D(0,3)作直线MN∥x轴,点P在直线NN上且S△PAC=
此文档下载收益归作者所有