2020版广西高考人教A版数学(理)一轮复习考点规范练:34 基本不等式及其应用 Word版含解析.pdf

2020版广西高考人教A版数学(理)一轮复习考点规范练:34 基本不等式及其应用 Word版含解析.pdf

ID:57524689

大小:334.71 KB

页数:5页

时间:2020-08-26

2020版广西高考人教A版数学(理)一轮复习考点规范练:34 基本不等式及其应用 Word版含解析.pdf_第1页
2020版广西高考人教A版数学(理)一轮复习考点规范练:34 基本不等式及其应用 Word版含解析.pdf_第2页
2020版广西高考人教A版数学(理)一轮复习考点规范练:34 基本不等式及其应用 Word版含解析.pdf_第3页
2020版广西高考人教A版数学(理)一轮复习考点规范练:34 基本不等式及其应用 Word版含解析.pdf_第4页
2020版广西高考人教A版数学(理)一轮复习考点规范练:34 基本不等式及其应用 Word版含解析.pdf_第5页
资源描述:

《2020版广西高考人教A版数学(理)一轮复习考点规范练:34 基本不等式及其应用 Word版含解析.pdf》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、考点规范练34基本不等式及其应用考点规范练B册第21页基础巩固1.下列不等式一定成立的是()A.lg>lgx(x>0)B.sinx+≥2(x≠kπ,k∈Z)C.x2+1≥2

2、x

3、(x∈R)D.>1(x∈R)答案C解析因为x>0,所以x2+≥2·x·=x,所以lg≥lgx(x>0),故选项A不正确;当x≠kπ,k∈Z时,sinx的正负不定,故选项B不正确;由基本不等式可知选项C正确;当x=0时,=1,故选项D不正确.2.若正数x,y满足=1,则3x+4y的最小值是()A.24B.28C.25D.26答案C解析∵正数x,y满足=1,=13+∴3x+4y=(3x+4y)≥13+3×

4、2=25,当且仅当x=2y=5时等号成立.∴3x+4y的最小值是25.故选C.3.已知a>0,b>0,a,b的等比中项是1,且m=b+,n=a+,则m+n的最小值是()A.3B.4C.5D.6答案B解析由题意知ab=1,则m=b+=2b,n=a+=2a,故m+n=2(a+b)≥4=4(当且仅当a=b=1时,等号成立).4.小王从甲地到乙地往返的时速分别为a和b(a

5、0上存在两点关于直线ax-2by+2=0(a>0,b>0)对称,则的最小值为()A.8B.9C.16D.18答案B解析由圆的对称性可得,直线ax-2by+2=0必过圆心(-2,1),所以a+b=1.(a+b)=5+所以≥5+4=9,当且仅当,即2a=b=时等号成立,故选B.6.若两个正实数x,y满足=1,且x+2y>m2+2m恒成立,则实数m的取值范围是()A.(-∞,-2)∪[4,+∞)B.(-∞,-4]∪[2,+∞)C.(-2,4)D.(-4,2)答案D解析因为x>0,y>0,=1,=2+所以x+2y=(x+2y)+2≥8,当且仅当,即x=2y时等号成立.由x+2y>m2

6、+2m恒成立,可知m2+2m<8,即m2+2m-8<0,解得-41,b>1,若ax=by=3,a+b=2,则的最大值为()A.2B.C.1D.答案C解析由ax=by=3,.又a>1,b>1,所以ab≤=3,所以lg(ab)≤lg3,从而=1,当且仅当a=b=时等号成立.8.已知x>1,则log9+logx的最小值是.x27答案解析∵x>1,∴log9+logx=≥2,当且仅当x=时等号成立.x27∴log9+logx的最小值为.x279.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y(单位:万元)与机器运转时间x(单

7、位:年)的关系为y=-x2+18x-25(x∈N*).则当每台机器运转年时,年平均利润最大,最大值是万元.答案58,而x>0,解析每台机器运转x年的年平均利润为=18-所以≤18-2=8,当且仅当x=5时,年平均利润最大,最大值为8万元.10.已知正数a,b满足2a2+b2=3,则a的最大值为.答案解析a(2a2+b2+1)=×(3+1)=,当且仅当a=,且2a2+b2=3,即a2=1,b2=1时,等号成立.故a的最大值为.11.(2018天津,理13)已知a,b∈R,且a-3b+6=0,则2a+的最小值为.答案解析因为2a>0,>0,所以2a+=2a+2-3b≥2-=2-,

8、当且仅当a=-3,b=1时,等号成立.因为a-3b+6=0,所以a-3b=-6.所以2a+≥2-,即2a+的最小值为.能力提升12.若不等式2x2-axy+y2≥0对于任意x∈[1,2]及y∈[1,3]恒成立,则实数a的取值范围是()A.a≤2B.a≥2C.a≤D.a≤答案A解析因为2x2-axy+y2≥0,且y≠0,所以2-a+1≥0.令t=,则不等式变为2t2-at+1≥0.由x∈[1,2],y∈[1,3],可知t∈,即2t2-at+1≥0在t∈时恒成立.由2t2-at+1≥0可得a≤,即a≤2t+.又2t+≥2=2.当且仅当2t=,即t=时等号成立,所以2t+取得最小值

9、2,所以有a≤2,故选A.13.已知不等式

10、y+4

11、-

12、y

13、≤2x+对任意实数x,y都成立,则实数a的最小值为()A.1B.2C.3D.4答案D解析令f(y)=

14、y+4

15、-

16、y

17、,则f(y)≤

18、y+4-y

19、=4,即f(y)=4.max∵不等式

20、y+4

21、-

22、y

23、≤2x+对任意实数x,y都成立,∴2x+≥f(y)=4,max∴a≥-(2x)2+4×2x=-(2x-2)2+4恒成立;令g(x)=-(2x)2+4×2x,则a≥g(x)=4,∴实数a的最小值为4.max14.已知x>0,a为大于2x的常数.(1)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。