23、1+9=360.故猜想m的最大值为36.(1)当n=1时,猜想成立.(2)当n=k(k≥1)时猜想成立,即f(k)=(2k+9)·3k+1+9能被36整除.当n=k+1时,f(k+1)=[2(k+1)+9]·3k+2+9=(2k+9+2)·3·3k+1+9=3[(2k+9)·3k+1+9]+6·3k+1-18=3[(2k+9)·3k+1+9]+18(3k-1).∵(2k+9)·3k+1+9,18(3k-1)均能被36整除,∴猜想成立.综上,m的最大值为36.答案D9.(2017山东淄博一模)设向量=(1,-2),=(a
24、,-1),=(-b,0),其中O为坐标原点,a>0,b>0,若A,B,C三点共线,则的最小值为( )A.4B.6C.8D.9解析=(a-1,1),=(-b-1,2),∵A,B,C三点共线,∴2(a-1)-(-b-1)=0,整理,得2a+b=1.又a>0,b>0,则=(2a+b)=4+≥4+2=8,当且仅当b=2a=时,等号成立.故选C.答案C10.用反证法证明“△ABC的三边长a,b,c的倒数成等差数列,求证B<”,假设正确的是( )A.B是锐角B.B不是锐角C.B是直角D.B是钝角答案B11.实数ai(i=1,2
25、,3,4,5,6)满足(a2-a1)2+(a3-a2)2+(a4-a3)2+(a5-a4)2+(a6-a5)2=1,则(a5+a6)-(a1+a4)的最大值为( )A.3B.2C.D.1解析因为[(a2-a1)2+(a3-a2)2+(a4-a3)2+(a5-a4)2+(a6-a5)2](1+1+1+4+1)≥[(a2-a1)×1+(a3-a2)×1+(a4-a3)×1+(a5-a4)×2+(a6-a5)×1]2=[(a6+a5)-(a1+a4)]2,所以[(a6+a5)-(a1+a4)]2≤8,即(a6+a5)-(a
26、1+a4)≤2.答案B12.已知x,y,z,a,b,c,k均为正数,且x2+y2+z2=10,a2+b2+c2=90,ax+by+cz=30,a+b+c=k(x+y+z),则k=( )A.B.C.3D.9解析因为x2+y2+z2=10,a2+b2+c2=90,ax+by+cz=30,所以(a2+b2+c2)(x2+y2+z2)=