欢迎来到天天文库
浏览记录
ID:57506013
大小:1.74 MB
页数:11页
时间:2020-08-26
《 2018年初三数学浙江专版复习难题突破专题一 规律归纳探索问题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、难题突破专题一 规律归纳探索问题近年来有关规律探索性题目在浙江省初中数学考试题中频繁出现,这类题目要求学生能根据给出的一组具有某种特定关系的数、式、图形或与图形有关的操作、变化过程,通过观察、分析、推理,探究其中所蕴含的规律,进而归纳或猜想出一般性的结论.有利于促进学生对数学知识和数学方法的巩固和掌握,也有利于学生思维能力的提高和自主探索、创新精神的培养.规律探究题一般分为数字规律题、数式规律题、图形规律题等.类型1 数字规律12017·淮安将从1开始的连续自然数按以下规律排列:图Z1-1则2017在第_____
2、___行.例题分层分析(1)观察发现,前5行中最大的数分别为________,________,________,________,________;(2)可知第n行中最大的数是_______,n=44时,最大数为_______;n=45时,_____.因此2017在第_______行解题方法点析解决数字规律问题的突破口在于寻找隐含在图形或式子中的规律,数的规律主要有倍数关系、等差关系、等比关系等.类型2 数式规律2我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图Z1-2,这个三角形的构造法
3、则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应(a+b)3展开式中的系数等.(1)根据上面的规律,写出(a+b)5的展开式;(2)利用上面的规律计算:25-5×24+10×23-10×22+5×2-1.图Z1-2例题分层分析(1)你能写出(a+b)1,(a+b)2,(a+b)3,(a+
4、b)4的展开式吗?(2)25-5×24+10×23-10×22+5×2-1和(a+b)1,(a+b)2,(a+b)3,(a+b)4,(a+b)5中哪个的展开式比较类似?此时a等于什么?b等于什么?解题方法点析数式规律要关注中学阶段所学的一些重要公式,此类问题主要考查学生的观察、分析、逻辑推理能力,读懂题意并根据所给的式子寻找规律是快速解题的关键.类型3 图形规律3[2017·衢州]如图Z1-3,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限,△ABO沿x轴正方向作无滑动的翻滚,经一次翻滚后得△A1B
5、1O,则翻滚3次后点B的对应点的坐标是__________,翻滚2017次后AB中点M经过的路径长为__________.图Z1-3例题分层分析(1)首先求出B点坐标________,(2)根据图形变换规律,每三次翻滚一周,翻滚前后对应点横坐标加________,纵坐标________,故B点变换后对应点坐标为________;(3)追踪M点的变化在每个周期中,点M分别沿着三个圆心角为120°的扇形运动,如图Z1-4,三个扇形半径分别为、1、1,又2017÷3=672……1,故其运动路径长为________.图Z
6、1-44[2017·酒泉]下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为________,第2017个图形的周长为________.图Z1-5例题分层分析(1)根据图形变化规律可知:图形个数是奇数个梯形时,构成的图形是________形;当图形的个数是偶数个时,正好构成____________;(2)第2个图形为平行四边形,它水平边长是________,斜边长是________,所以周长是8.(3)第2017个图形构成的图形是________,这个梯形的上底是__
7、______,下底是________,腰长是________,故周长是________.专题训练1.[2017·自贡]填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为( )图Z1-6A.180B.182C.184D.1862.[2017·重庆A]下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为( )图Z1-7A.73B.81C.91D.1093.[2017·
8、温州]我们把1,1,2,3,5,8,13,21…这组数称为斐波那契数列.为了进一步研究,依次以这列数为半径做90°圆弧P1P2,P2P3,P3P4,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4…得到螺旋折线(如图Z1-8),已知点P1(0,1),P2(-1,0),P3(0,-1),则该折线上点P9的坐标为( )图Z1-8A.(-6,24)B.(-6,2
此文档下载收益归作者所有