用-全等三角形的判定(总复习)说课讲解.ppt

用-全等三角形的判定(总复习)说课讲解.ppt

ID:57458067

大小:807.50 KB

页数:26页

时间:2020-08-22

用-全等三角形的判定(总复习)说课讲解.ppt_第1页
用-全等三角形的判定(总复习)说课讲解.ppt_第2页
用-全等三角形的判定(总复习)说课讲解.ppt_第3页
用-全等三角形的判定(总复习)说课讲解.ppt_第4页
用-全等三角形的判定(总复习)说课讲解.ppt_第5页
资源描述:

《用-全等三角形的判定(总复习)说课讲解.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1第4讲全等三角形的判定全等三角形定义:能够的两个三角形对应元素:对应_____、对应、对应。性质:全等三角形的对应边、。全等三角形的、也对应相等。判定:、、、。全等三角形的画图:利用直尺和圆规,根据、、的方法都可画出与已知三角形全等的三角形。知识点知识梳理:ABDABCSSA不能判定全等谈谈本节课你有什么收获?你会证明三角形全等了吗?典型例题:例1:如图,点B在AE上,∠CAB=∠DAB,要使ΔABC≌ΔABD,可补充的一个条件是.分析:现在我们已知A→∠CAB=∠DAB①用SAS,需要补充条件AB=AC,②用ASA,需要补充条件∠CBA=∠DB

2、A,③用AAS,需要补充条件∠C=∠D,④此外,补充条件∠CBE=∠DBE也可以(?)SASASAAASS→AB=AB(公共边).AB=AC∠CBA=∠DBA∠C=∠D∠CBE=∠DBE7例、如图,已知AB=AC,AD=AE,AB、DC相交于点M,AC、BE相交于点N,∠1=∠2,试说明:(1)△ABE≌△ACD(2)AM=ANANMEDCB12创造条件!?8练一练一、挖掘“隐含条件”判全等1.如图(1),AB=CD,AC=BD,则△ABC≌△DCB吗?说说理由ADBC图(1)2.如图(2),点D在AB上,点E在AC上,CD与BE相交于点O,且AD

3、=AE,AB=AC.若∠B=20°,CD=5cm,则∠C=,BE=.说说理由.BCODEA图(2)3.如图(3),AC与BD相交于O,若OB=OD,∠A=∠C,若AB=3cm,则CD=.说说理由.ADBCO图(3)20°5cm3cm学习提示:公共边,公共角,对顶角这些都是隐含的边,角相等的条件!94、如图,已知AD平分∠BAC,要使△ABD≌△ACD,根据“SAS”需要添加条件;根据“ASA”需要添加条件;根据“AAS”需要添加条件;ABCDAB=AC∠BDA=∠CDA∠B=∠C友情提示:添加条件的题目.首先要找到已具备的条件,这些条件有些是题目已

4、知条件,有些是图中隐含条件.二.添条件判全等10试一试三、熟练转化“间接条件”判全等6如图,AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△CEB全等吗?为什么?ADBCFE8.“三月三,放风筝”如图(6)是小东同学自己做的风筝,他根据AB=AD,BC=DC,不用度量,就知道∠ABC=∠ADC。请用所学的知识给予说明。解答7.如图(5)∠CAE=∠BAD,∠B=∠D,AC=AE,△ABC与△ADE全等吗?为什么?ACEBD解答解答116.如图(4)AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△CEB全等吗?为什么?解:∵AE=CF

5、(已知)ADBCFE∴AE-FE=CF-EF(等量减等量,差相等)即AF=CE在△AFD和△CEB中,∴△AFD≌△CEB∠AFD=∠CEB(已知)DF=BE(已知)AF=CE(已证)(SAS)127.如图(5)∠CAE=∠BAD,∠B=∠D,AC=AE,△ABC与△ADE全等吗?为什么?ACEBD解:∵∠CAE=∠BAD(已知)∴∠CAE+∠BAE=∠BAD+∠BAE(等量加等量,和相等)即∠BAC=∠DAE在△ABC和△ADE中,∴△ABC≌△ADE∠BAC=∠DAE(已证)AC=AE(已知)∠B=∠D(已知)(AAS)例6:如图,已知,AB=

6、CD,CE=DF,AE=BF,则AE∥DF吗?为什么?证明:AE∥DF,理由是:∵AB=CD(已知)∴AB+BC=CD+BC,即AC=BD.∴ΔACE≌ΔBDF(SSS)在ΔACE和ΔBDF中AC=BD(已证)CE=DF(已知)AE=BF(已知)∴∠E=∠F(全等三角形的对应角相等)∴AE∥DF(内错角相等,两直线平行)典型例题:14实际运用9.测量如图河的宽度,某人在河的对岸找到一参照物树木A,视线AB与河岸垂直,然后该人沿河岸步行10步(每步约0.75M)到O处,进行标记,再向前步行10步到D处,最后背对河岸向前步行20步,此时树木A,标记O,

7、恰好在同一视线上,则河的宽度为米。15ABODC如图是用两根长度相等的拉线固定电线杆的示意图.其中一根拉到B,另一根拉到C。那么C、B两端点到D的距离DC和DB的大小有何关系?说明理由。练一练小明的设计方案:先在池塘旁取一个能直接到达A和B处的点C,连结AC并延长至D点,使AC=DC,连结BC并延长至E点,使BC=EC,连结CD,用米尺测出DE的长,这个长度就等于A,B两点的距离。请你说明理由。AC=DC∠ACB=∠DCEBC=EC△ACB≌△DCE(SAS)AB=DEECBAD如图线段AB是一个池塘的长度,现在想测量这个池塘的长度,在水上测量不方

8、便,你有什么好的方法较方便地把池塘的长度测量出来吗?想想看。例8:如图在ΔABC中,AD⊥BC于D,BE⊥AC于E,AD交

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。