欢迎来到天天文库
浏览记录
ID:57368705
大小:108.31 KB
页数:3页
时间:2020-08-12
《高数之不定积分 (3).pdf》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、§4.1不定积分的概念与性质§43分部积分法设函数uu(x)及vv(x)具有连续导数那么两个函数乘积的导数公式为(uv)uvuv移项得uv(uv)uv对这个等式两边求不定积分得uvdxuvuvdx或udvuvvdu这个公式称为分部积分公式分部积分过程:uvdxudvuvvduuvuvdx例1xcosxdxxdsinxxsinxsinxdxxsinxcosxC例2xexdxxdexxexexdxxexexC例3x2exdxx2dexx2ex
2、exdx2x2ex2xexdxx2ex2xdexx2ex2xex2exdxx2ex2xex2exCex(x22x2)C1111例4xlnxdxlnxdx2x2lnxx2dx222x1111x2lnxxdxx2lnxx2C2224例5arccosxdxxarccosxxdarccosx1xarccosxxdx1x211xarccosx(1x2)2d(1x2)xarccosx1x2C21111例6xarctanxdxarctanxdx2x2arctanxx2dx22
3、21x2111x2arctanx(1)dx221x2111x2arctanxxarctanxC222例7求exsinxdx1§4.1不定积分的概念与性质解因为exsinxdxsinxdexexsinxexdsinxexsinxexcosxdxexsinxcosxdexexsinxexcosxexdcosxexsinxexcosxexdcosxexsinxexcosxexsinxdx1所以exsinxdxex(sinxcosx)C2例8求sec3xdx解因为sec3xdxsecxsec
4、2xdxsecxdtanxsecxtanxsecxtan2xdxsecxtanxsecx(sec2x1)dxsecxtanxsec3xdxsecxdxsecxtanxln
5、secxtanx
6、sec3xdx1所以sec3xdx(secxtanxln
7、secxtanx
8、)C2dx例9求I其中n为正整数n(x2a2)ndx1x解IarctanC1x2a2aa当n1时,用分部积分法有dxxx22(n1)dx(x2a2)n1(x2a2)n1(x2a2)nx1a22(n1)[]dx(
9、x2a2)n1(x2a2)n1(x2a2)nx即I2(n1)(Ia2I)n1(x2a2)n1n1n2§4.1不定积分的概念与性质1x于是I[(2n3)I]n2a2(n1)(x2a2)n1n11x以此作为递推公式并由IarctanC即可得I1aan例10求exdx解令xt2则dx2tdt于exdx2tetdt2et(t1)C2ex(x1)Cexdxexd(x)22xexdx2xdex2xex2exdx2xex2exC2ex(x1)C第一换元法与分部积分法的比较:共
10、同点是第一步都是凑微分令(x)uf[(x)](x)dxf[(x)]d(x)f(u)duu(x)v(x)dxu(x)dv(x)u(x)v(x)v(x)du(x)哪些积分可以用分部积分法?xcosxdxxexdxx2exdxxlnxdxarccosxdxxarctanxdxexsinxdxsec3xdx2xex2dxex2dx2eudux2exdxx2dexx2exexdx23
此文档下载收益归作者所有