南昌大学2005年高数(下)试题.和答案.doc

南昌大学2005年高数(下)试题.和答案.doc

ID:57274602

大小:450.50 KB

页数:11页

时间:2020-08-08

南昌大学2005年高数(下)试题.和答案.doc_第1页
南昌大学2005年高数(下)试题.和答案.doc_第2页
南昌大学2005年高数(下)试题.和答案.doc_第3页
南昌大学2005年高数(下)试题.和答案.doc_第4页
南昌大学2005年高数(下)试题.和答案.doc_第5页
资源描述:

《南昌大学2005年高数(下)试题.和答案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、南昌大学2004~2005学年第二学期期末考试试卷及答案一、填空题(每空3分,共15分)1.设,则.2.曲面在点处的切平面方程是.3.交换累次积分的次序:.4.设闭区域D是由分段光滑的曲线L围成,则:使得格林公式:成立的充分条件是:其中L是D的取正向曲线;5.级数的收敛域是.二、单项选择题(每小题3分,共15分)1.当,时,函数的极限是()A.等于0;B.等于;C.等于;D.不存在.2.函数在点处具有偏导数,是函数在该点可微分的()A.充分必要条件;B.充分但非必要条件;C.必要但非充分条件;D.既非充分

2、又非必要条件.3.设,则()A.;B.;C.;D..4.若级数在处收敛,则此级数在处()A.绝对收敛;B.条件收敛;C.发散;D.收敛性不确定.5.微分方程的特解应设为()A.;B.;C.;D..三.(8分)设一平面通过点,而且通过直线,求该平面方程.四.(8分)设,其中具有二阶连续偏导数,试求和.五.(8分)计算对弧长的曲线积分其中是圆周与直线在第一象限所围区域的边界.六、(8分)计算对面积的曲面积分,其中为平面在第一卦限中的部分.七.(8分)将函数,展开成的幂级数.八.(8分)求微分方程:的通解.九.

3、幂级数:1.试写出的和函数;(4分)2.利用第1问的结果求幂级数的和函数.(8分)十.设函数在上连续,且满足条件其中是由曲线,绕轴旋转一周而成的曲面与平面(参数)所围成的空间区域。1、将三重积分写成累次积分的形式;(3)2、试求函数的表达式.(7分)南昌大学2004~2005学年第二学期期末考试答案1.2.3.4.5.二.选择1.2.3.4.5.三..解:平行该平面该平面的法向量所求的平面方程为:即:四.解:令,五.解:其中::::而故:六.解::,七.解:,而,,,八.解:,原方程为:通解为:九、解:1

4、、于是2、令:由1知:且满足:通解:由,得:;故:十、解:1、旋转曲面方程为:由,得:故在面的投影区域为::2、由1得:记:则:两边乘以:,再在上积分得:解得:故:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。