欢迎来到天天文库
浏览记录
ID:57248878
大小:26.75 KB
页数:36页
时间:2020-08-07
《高考数学函数复习教案.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2013届高考数学函数复习教案2013高中数学精讲精练第二章函数【知识导读】【方法点拨】函数是中学数学中最重要,最基础的内容之一,是学习高等数学的基础.高中函数以具体的幂函数,指数函数,对数函数和三角函数的概念,性质和图像为主要研究对象,适当研究分段函数,含绝对值的函数和抽象函数;同时要对初中所学二次函数作深入理解.1.活用“定义法”解题.定义是一切法则与性质的基础,是解题的基本出发点.利用定义,可直接判断所给的对应是否满足函数的条件,证明或判断函数的单调性和奇偶性等.2.重视“数形结合思想”渗透.“数缺形时少直观,形缺数时难入微”.当你所研究的问题较为抽象时,当你的思维陷入困境
2、时,当你对杂乱无章的条件感到头绪混乱时,一个很好的建议:画个图像!利用图形的直观性,可迅速地破解问题,乃至最终解决问题.3.强化“分类讨论思想”应用.分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法.进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”.4.掌握“函数与方程思想”.函数与方程思想是最重要,最基本的数学思想方法之一,它在整个高中数学中的地位与作用很高.函数的思想包括运用函数的概念和性质去分析问题,
3、转化问题和解决问题.第1课函数的概念【考点导读】1.在体会函数是描述变量之间的依赖关系的重要数学模型的基础上,通过集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.2.准确理解函数的概念,能根据函数的三要素判断两个函数是否为同一函数.【基础练习】1.设有函数组:①,;②,;③,;④,;⑤,.其中表示同一个函数的有___②④⑤___.2.设集合,,从到有四种对应如图所示:其中能表示为到的函数关系的有_____②③____.写出下列函数定义域:(1)的定义域为______________;(2)的定义域为________
4、______;(3)的定义域为______________;(4)的定义域为_________________.4.已知三个函数:(1);(2);(3).写出使各函数式有意义时,,的约束条件:(1)______________________;(2)______________________;(3)______________________________.5.写出下列函数值域:(1),;值域是.(2);值域是.(3),.值域是.【范例解析】例1.设有函数组:①,;②,;③,;④,.其中表示同一个函数的有③④.分析:判断两个函数是否为同一函数,关键看函数的三要素是否相同.解:
5、在①中,的定义域为,的定义域为,故不是同一函数;在②中,的定义域为,的定义域为,故不是同一函数;③④是同一函数.点评:两个函数当它们的三要素完全相同时,才能表示同一函数.而当一个函数定义域和对应法则确定时,它的值域也就确定,故判断两个函数是否为同一函数,只需判断它的定义域和对应法则是否相同即可.例2.求下列函数的定义域:①;②;解:(1)①由题意得:解得且或且,故定义域为.②由题意得:,解得,故定义域为.例3.求下列函数的值域:(1),;(2);(3).分析:运用配方法,逆求法,换元法等方法求函数值域.(1)解:,,函数的值域为;(2)解法一:由,,则,,故函数值域为.解法二:由
6、,则,,,,故函数值域为.(3)解:令,则,,当时,,故函数值域为.点评:二次函数或二次函数型的函数求值域可用配方法;逆求法利用函数有界性求函数的值域;用换元法求函数的值域应注意新元的取值范围.【反馈演练】1.函数f(x)=的定义域是___________.2.函数的定义域为_________________.函数的值域为________________.函数的值域为_____________.5.函数的定义域为_____________________.6.记函数f(x)=的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a1)的定义域为B.(1)求A;(2)若BA,
7、求实数a的取值范围.解:(1)由2-≥0,得≥0,x-1或x≥1,即A=(-∞,-1)∪[1,+∞).(2)由(x-a-1)(2a-x)0,得(x-a-1)(x-2a)0.∵a1,∴a+12a,∴B=(2a,a+1).∵BA,∴2a≥1或a+1≤-1,即a≥或a≤-2,而a1,∴≤a1或a≤-2,故当BA时,实数a的取值范围是(-∞,-2]∪[,1).第2课函数的表示方法【考点导读】1.会根据不同的需要选择恰当的方法(如图像法,列表法,解析法)表示函数.2.求解析式一般有四种情况
此文档下载收益归作者所有