欢迎来到天天文库
浏览记录
ID:57127880
大小:269.50 KB
页数:16页
时间:2020-08-03
《整式的乘法与因式分解能力培优复习课程.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、整式的乘法与因式分解能力培优精品文档第十四章整式的乘法与因式分解14.1整式的乘法专题一幂的性质1.【2012·湛江】下列运算中,正确的是( )A.3a2-a2=2B.(a2)3=a9C.a3•a6=a9D.(2a2)2=2a42.【2012·泰州】下列计算正确的是( )A.·B.·C.D.3.【2012·衢州】下列计算正确的是( )A.2a2+a2=3a4B.a6÷a2=a3C.a6·a2=a12D.(-a6)2=a12专题二幂的性质的逆用4.若2a=3,2b=4,则23a+2b等于( )A.7B.12C.432D.1085.若2m=5,2n=3,求
2、23m+2n的值.6.计算:(1)(-0.125)2014×(-2)2014×(-4)2015;(2)(-)2015×811007.专题三整式的乘法7.下列运算中正确的是( )A.B.收集于网络,如有侵权请联系管理员删除精品文档C.D.8.若(3x2-2x+1)(x+b)中不含x2项,求b的值,并求(3x2-2x+1)(x+b)的值.9.先阅读,再填空解题: (x+5)(x+6)=x2+11x+30; (x-5)(x-6)=x2-11x+30; (x-5)(x+6)=x2+x-30; (x+5)(x-6)=x2-x-30. (1)观察积中的一次项系数、
3、常数项与两因式中的常数项有何关系?答:________.(2)根据以上的规律,用公式表示出来:________.(3)根据规律,直接写出下列各式的结果:(a+99)(a-100)=________;(y-80)(y-81)=________.专题四整式的除法10.计算:(3x3y-18x2y2+x2y)÷(-6x2y)=________.11.计算:.12.计算:(a-b)3÷(b-a)2+(-a-b)5÷(a+b)4.收集于网络,如有侵权请联系管理员删除精品文档状元笔记【知识要点】1.幂的性质(1)同底数幂的乘法:(m,n都是正整数),即同底数幂相乘,底数不
4、变,指数相加.(2)幂的乘方:(m,n都是正整数),即幂的乘方,底数不变,指数相乘.(3)积的乘方:(n都是正整数),即积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘.2.整式的乘法(1)单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:就是用单项式去乘单项式的每一项,再把所得的积相加.(3)多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.3.整式的除法(1)同底数幂相除:(m,n都是正整数,并且m>n),即同底数幂相除,
5、底数不变,指数相减.收集于网络,如有侵权请联系管理员删除精品文档(2)(a≠0),即任何不等于0的数的0次幂都等于1.(3)单项式除以单项式:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.(4)多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.【温馨提示】1.同底数幂乘法法则与合并同类项法则相混淆.同底数幂相乘,应是“底数不变,指数相加”;而合并同类项法则是“系数相加,字母及字母的指数不变”.2.同底数幂相乘与幂的乘方相混淆.同底数幂相乘,应是“底数不变,指数相加”;幂的乘
6、方,应是“底数不变,指数相乘”.3.运用同底数幂的乘法(除法)法则时,必须化成同底数的幂后才能运用上述法则进行计算.4.在单项式(多项式)除以单项式中,系数都包括前面的符号,多项式各项之间的“加、减”符号也可以看成系数的符号来参与运算.【方法技巧】1.在幂的性质中,公式中的字母可以表示任意有理数,也可以表示单项式或多项式.2.单项式与多项式相乘,多项式与多项式相乘时,要按照一定的顺序进行,否则容易造成漏项或增项的错误.3.单项式与多项式相乘,多项式除以单项式中,结果的项数与多项式的项数相同,不要漏项.收集于网络,如有侵权请联系管理员删除精品文档参考答案:1.C
7、解析:A中,3a2与-a2是同类项,可以合并,3a2―a2=2a2,故A错误;B中,(a2)3=a2×3=a6,故B错误;C中,a3•a6=a3+6=a9,故C正确;D中,(2a2)2=22(a2)2=4a4,故D错误.故选C.2.C解析:·,选项A错误;·,选项B错误;,选项C正确;,选项D错误.故选C.3.D解析:A中,,故A错误;B中,,故B错误;C中,,故C错误.故选D.4.C解析:23a+2b=23a×22b=(2a)3×(2b)2=33×42=432.故选C.5.解:23m+2n=23m·22n=(2m)3·(2n)2=53·32=1125.6.解
8、:(1)原式=(0.125×2×4)2
此文档下载收益归作者所有