一次函数的应用题.ppt

一次函数的应用题.ppt

ID:57061373

大小:2.80 MB

页数:40页

时间:2020-07-30

一次函数的应用题.ppt_第1页
一次函数的应用题.ppt_第2页
一次函数的应用题.ppt_第3页
一次函数的应用题.ppt_第4页
一次函数的应用题.ppt_第5页
资源描述:

《一次函数的应用题.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、一次函数的应用1.某移动公司对于移动话费推出两种收费方式:A方案:每月收取基本月租费25元,另收通话费为0.36元/min;B方案:零月租费,通话费为0.5元/min.(1)试写出A,B两种方案所付话费y(元)与通话时间t(min)之间的函数表达式;(2)分别画出这两个函数的图象;(3)若林先生每月通话300min,他选择哪种付费方式比较合算?解:(1)A方案:y=25+0.36t(t≥0),B方案:y=0.5t(t≥0).(2)这两个函数的图象如下:O51510●510yt30152535●y=25+0.36t(t≥0

2、)O132123yt●y=0.5t(t≥0)●(3)当t=300时,A方案:y=25+0.36t=25+0.36×300=133(元);B方案:y=0.5t=0.5×300=150(元).所以此时采用A方案比较合算.动脑筋国际奥林匹克运动会早期,男子撑杆跳高的纪录近似值如下表所示:年份190019041908高度(m)3.333.533.73观察这个表中第二行的数据,可以为奥运会的撑杆跳高纪录与时间的关系建立函数模型吗?用t表示从1900年起增加的年份,则在奥运会早期,男子撑杆跳高的纪录y(m)与t的函数关系式可以设为y

3、=kt+b.上表中每一届比上一届的纪录提高了0.2m,可以试着建立一次函数的模型.年份190019041908高度(m)3.333.533.73解得b=3.3,k=0.05.公式①就是奥运会早期男子撑杆跳高纪录y与时间t的函数关系式.于是y=0.05t+3.33.①当t=8时,y=3.73,这说明1908年的撑杆跳高纪录也符合公式①.由于t=0(即1900年)时,撑杆跳高的纪录为3.33m,t=4(即1904年)时,纪录为3.53m,因此b=3.3,4k+b=3.53.能够利用上面得出的公式①预测1912年奥运会的男子撑

4、杆跳高纪录吗?实际上,1912年奥运会男子撑杆跳高纪录约为3.93m.这表明用所建立的函数模型,在已知数据邻近做预测,结果与实际情况比较吻合.y=0.05×12+3.33=3.93.y=0.05t+3.33.①能够利用公式①预测20世纪80年代,譬如1988年奥运会男子撑杆跳高纪录吗?然而,1988年奥运会的男子撑杆跳高纪录是5.90m,远低于7.73m.这表明用所建立的函数模型远离已知数据做预测是不可靠的.y=0.05×88+3.33=7.73.y=0.05t+3.33.①请每位同学伸出一只手掌,把大拇指与小拇指尽量张

5、开,两指间的距离称为指距.已知指距与身高具有如下关系:例2指距x(cm)192021身高y(cm)151160169(1)求身高y与指距x之间的函数表达式;(2)当李华的指距为22cm时,你能预测他的身高吗?上表3组数据反映了身高y与指距x之间的对应关系,观察这两个变量之间的变化规律,当指距增加1cm,身高就增加9cm,可以尝试建立一次函数模型.解设身高y与指距x之间的函数表达式为y=kx+b.将x=19,y=151与x=20,y=160代入上式,得19k+b=151,20k+b=160.(1)求身高y与指距x之间的函数

6、表达式;解得k=9,b=-20.于是y=9x-20.①将x=21,y=169代入①式也符合.公式①就是身高y与指距x之间的函数表达式.解当x=22时,y=9×22-20=178.因此,李华的身高大约是178cm.(2)当李华的指距为22cm时,你能预测他的身高吗?(1)根据表中数据确定该一次函数的表达式;练习(2)如果蟋蟀1min叫了63次,那么该地当时的气温大约为多少摄氏度?(3)能用所求出的函数模型来预测蟋蟀在0℃时所鸣叫的次数吗?在某地,人们发现某种蟋蟀1min所叫次数与当地气温之间近似为一次函数关系.下面是蟋蟀所

7、叫次数与气温变化情况对照表:1.蟋蟀叫的次数…8498119…温度(℃)…151720…解设蟋蟀1min所叫次数与气温之间的函数表达式为y=kx+b.将x=15,y=84与x=20,y=119代入上式,得15k+b=84,20k+b=119.解得k=7,b=-21.于是y=7x-21.(1)根据表中数据确定该一次函数的表达式;有y=7x-21=63,解得x=12.当y=63时,解(2)如果蟋蟀1min叫了63次,那么该地当时的气温大约为多少摄氏度?(3)能用所求出的函数模型来预测蟋蟀在0℃时所鸣叫次数吗?答:不能,因为此

8、函数关系是近似的,与实际生活中的情况有所不符,蟋蟀在0℃时可能不会鸣叫.2.某商店今年7月初销售纯净水的数量如下表所示:日期123数量(瓶)160165170(1)你能为销售纯净水的数量与时间之间的关系建立函数模型吗?(2)用所求出的函数解析式预测今年7月5日该商店销售纯净水的数量.解销售纯净水的数量y(瓶)与时间t

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。