联立方程系统估计.ppt

联立方程系统估计.ppt

ID:56958490

大小:226.00 KB

页数:23页

时间:2020-07-21

联立方程系统估计.ppt_第1页
联立方程系统估计.ppt_第2页
联立方程系统估计.ppt_第3页
联立方程系统估计.ppt_第4页
联立方程系统估计.ppt_第5页
资源描述:

《联立方程系统估计.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、§6.7联立方程计量经济学模型的系统估计方法theSystemsEstimationMethods一、联立方程模型随机误差项方差—协方差矩阵二、三阶段最小二乘法简介三、完全信息最大似然法简介一、联立方程模型随机误差项方差—协方差矩阵⒈随机误差项的同期相关性随机误差项的相关性不仅存在于每个结构方程不同样本点之间,而且存在于不同结构方程之间。对于不同结构方程的随机误差项之间,不同时期互不相关,只有同期的随机误差项之间才相关,称为具有同期相关性。⒉具有同期相关性的方差—协方差矩阵假设:对于一个结构方程的随机误差项,在不同样本点之间,具有同方差

2、性和序列不相关性。即对于不同结构方程的随机误差项之间,具有且仅具有同期相关性。即于是,联立方程模型系统随机误差项方差—协方差矩阵为:二、三阶段最小二乘法简介(3SLS,ThreeStagesLeastSquares)⒈概念3SLS是由Zellner和Theil于1962年提出的同时估计联立方程模型全部结构方程的系统估计方法。其基本思路是3SLS=2SLS+GLS即首先用2SLS估计模型系统中每一个结构方程,然后再用GLS估计模型系统。⒉三阶段最小二乘法的步骤⑴用2SLS估计结构方程得到方程随机误差项的估计值。OLS估计OLS估计⑵求随机

3、误差项方差—协方差矩阵的估计量⑶用GLS估计原模型系统得到结构参数的3SLS估计量为:⒊三阶段最小二乘法估计量的统计性质⑴如果联立方程模型系统中所有结构方程都是可以识别的,并且非奇异,则3SLS估计量是一致性估计量。⑵3SLS估计量比2SLS估计量更有效。为什么?⑶如果Σ是对角矩阵,即模型系统中不同结构方程的随机误差项之间无相关性,那么可以证明3SLS估计量与2SLS估计量是等价的。⑷这反过来说明,3SLS方法主要优点是考虑了模型系统中不同结构方程的随机误差项之间的相关性。三、完全信息最大似然法简介(FIML,FullInformati

4、onMaximumLikelihood)⒈概念另一种已有实际应用的联立方程模型的系统估计方法。Rothenberg和Leenders于1964年提出一个线性化的FIML估计量。FIML是ML的直接推广,是在已经得到样本观测值的情况下,使整个联立方程模型系统的或然函数达到最大以得到所有结构参数的估计量。⒉复习:多元线性单方程模型的最大似然估计i=1,2,…,nY的随机抽取的n组样本观测值的联合概率对数或然函数为参数的最大或然估计⒊复习:有限信息最大或然法(LIML,LimitedInformationMaximumLikelihood)以

5、最大或然为准则、通过对简化式模型进行最大或然估计,以得到结构方程参数估计量的联立方程模型的单方程估计方法。由Anderson和Rubin于1949年提出,早于两阶段最小二乘法。适用于恰好识别和过度识别结构方程的估计。在该方法中,以下两个概念是重要的:一是这里的“有限信息”指的是每次估计只考虑一个结构方程的信息,而没有考虑模型系统中其它结构方程的信息;二是这里的“最大或然法”是针对结构方程中包含的内生变量的简化式模型的,即应用最大或然法求得的是简化式参数估计量,而不是结构式参数估计量。⒋完全信息最大似然函数ML的直接推广对数或然函数对于协

6、方差逆矩阵的元素取极大值的一阶条件,得到协方差矩阵的元素的FIML估计量;对数或然函数对于待估计参数取极大值的一阶条件,求解该方程系统,即可得到结构参数的FIML估计量。研究的重点是如何求解非线性方程系统。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。