圆系方程及其应用.doc

圆系方程及其应用.doc

ID:56918783

大小:301.50 KB

页数:3页

时间:2020-07-24

圆系方程及其应用.doc_第1页
圆系方程及其应用.doc_第2页
圆系方程及其应用.doc_第3页
资源描述:

《圆系方程及其应用.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、圆系方程及其应用一、常见的圆系方程有如下几种:1、以为圆心的同心圆系方程: 与圆+++F=0同心的圆系方程为:+++=02、过直线++C=0与圆+++F=0交点的圆系方程为:+++F+(++C)=0(R)3、过两圆:+=0,:+=0交点的圆系方程为:++(+)=0(≠-1,此圆系不含:+=0)特别地,当=-1时,上述方程为根轴方程.两圆相交时,表示公共弦方程;两圆相切时,表示公切线方程.注:为了避免利用上述圆系方程时讨论圆,可等价转化为过圆和两圆公共弦所在直线交点的圆系方程:二、圆系方程在解题中的应用:1、利用圆系方程求圆的方程:例1求经过两圆x2+y2+6x-4=0和

2、x2+y2+6y-28=0的交点,并且圆心在直线x-y-4=0上的圆的方程。解一:求出两交点(-1,3)(-6,-2),再用待定系数法:1.用一般式; 2.用标准式。(注:标准式中可先求圆心的两个坐标,而圆心正好在两交点的中垂线上。)解二:用两点的中垂线与直线的交点得圆心:1.两交点的中垂线与直线相交;2.过圆心与公共弦垂直的直线与直线相交;3.两圆心连线与直线相交。解三:利用圆系方程求出圆心坐标,圆心在直线方程上,代入直线方程求解。例1、求经过两圆+3--2=0和+2++1=0交点和坐标原点的圆的方程.解:方法3:由题可设所求圆的方程为:  (+3--2)+(+2++

3、1)=0∵ (0,0)在所求的圆上,∴ 有-2+=0. 从而=2故所求的圆的方程为:即 +7+=0。2、利用圆系方程求最小面积的圆的方程:例2(1):求过两圆和的交点且面积最小的圆的方程。  分析:本题若先联立方程求交点,再设所求圆方程,寻求各变量关系,求半径最值,虽然可行,但运算量较大。自然选用过两圆交点的圆系方程简便易行。为了避免讨论,先求出两圆公共弦所在直线方程。则问题可转化为求过两圆公共弦及圆交点且面积最小的圆的问题。解:圆和的公共弦方程为过直线与圆的交点的圆系方程为,即依题意,欲使所求圆面积最小,只需圆半径最小,则两圆的公共弦必为所求圆的直径,圆心必在公共弦所

4、在直线上。即,则代回圆系方程得所求圆方程例2(2);求经过直线:2++4=0与圆C:+2-4+1=0的交点且面积最小的圆的方程.解:设圆的方程为:+2-4+1+(2++4)=0即++(1+4)=0则,当=时,最小,从而圆的面积最小,故所求圆的方程为:+26-12+37=0练习:1.求经过圆x2+y2+8x-6y+21=0与直线x-y+7=0的两个交点且过原点的圆的方程。(常数项为零)2.求经过圆x2+y2+8x-6y+21=0与直线x-y+5=0的两个交点且圆心在x轴上的圆的方程。(圆心的纵坐标为零)3.求经过圆x2+y2+8x-6y+21=0与直线x-y+5=0的两个

5、交点且面积最小的圆方程。(半径最小或圆心在直线上)4.求经过圆x2+y2+8x-6y+21=0与直线x-y+5=0的两个交点且与x轴相切的圆的方程;并求出切点坐标。(圆心到x轴的距离等于半径)3、利用圆系方程求参数的值:例3:已知圆与直线相交于P,Q两点,O为坐标原点,若,求实数m的值。分析:此题最易想到设出,由得到,利用设而不求的思想,联立方程,由根与系数关系得出关于m的方程,最后验证得解。倘若充分挖掘本题的几何关系,不难得出O在以PQ为直径的圆上。而P,Q刚好为直线与圆的交点,选取过直线与圆交点的圆系方程,可极大地简化运算过程。解:过直线与圆的交点的圆系方程为:,即

6、  ………………….①依题意,O在以PQ为直径的圆上,则圆心显然在直线上,则,解之可得又满足方程①,则,故。4、利用圆系方程判断直线与圆的位置关系:例4圆系+2+(4+10)+10+20=0(R,≠-1)中,任意两个圆的位置关系如何?解:圆系方程可化为:+10+20+(2+4+10)=0∵ 与无关  ∴  即易知圆心(0,-5)到直线+2+5=0的距离恰等于圆=5的半径.故直线+2+5=0与圆=5相切,即上述方程组有且只有一个解,从而圆系方程所表示的任意两个圆有且只有一个公共点,故它们的关系是外切或内切.总结:在求解过直线与圆,圆与圆交点的圆有关问题时,若能巧妙使用圆系

7、方程,往往能优化解题过程,减少运算量,收到事半功倍的效果。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。