欢迎来到天天文库
浏览记录
ID:56803159
大小:588.50 KB
页数:36页
时间:2020-06-28
《大一高数课件第七章.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、一、向量在轴上的投影与投影定理证于是空间两向量的夹角的概念:类似地,可定义向量与一轴或空间两轴的夹角.特殊地,当两个向量中有一个零向量时,规定它们的夹角可在0与之间任意取值.空间一点在轴上的投影空间一向量在轴上的投影关于向量的投影定理(1)证定理1的说明:投影为正;投影为负;投影为零;(4)相等向量在同一轴上投影相等;关于向量的投影定理(2)(可推广到有限多个)二、向量在坐标轴上的分向量与向量的坐标由例1知向量在轴上的投影向量在轴上的投影向量在轴上的投影按基本单位向量的坐标分解式:在三个坐标轴上的分向
2、量:向量的坐标:向量的坐标表达式:特殊地:向量的加减法、向量与数的乘法运算的坐标表达式解设为直线上的点,由题意知:非零向量的方向角:非零向量与三条坐标轴的正向的夹角称为方向角.三、向量的模与方向余弦的坐标表示式由图分析可知向量的方向余弦方向余弦通常用来表示向量的方向.向量模长的坐标表示式向量方向余弦的坐标表示式方向余弦的特征特殊地:单位向量的方向余弦为解所求向量有两个,一个与同向,一个反向或解解向量在轴上的投影与投影定理.向量在坐标轴上的分向量与向量的坐标.向量的模与方向余弦的坐标表示式.四、小结(注
3、意分向量与向量的坐标的区别)思考题思考题解答对角线的长为练习题3、已知两点和,则向量____,=_________,方向余弦=_____;=____;=_____;_____,_____,______;方向4、已知向量,及,;练习题答案
此文档下载收益归作者所有