欢迎来到天天文库
浏览记录
ID:56750975
大小:182.00 KB
页数:4页
时间:2020-07-07
《构造圆巧解题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、构造辅助圆巧解中考压轴题关于动点对定线段所张的角为定值问题,从表面上看似与圆无关,但如果我们能深入挖掘题目中的隐含条件,善于联想所学定理,巧妙地构造符合题意特征的辅助圆,再利用圆的有关性质来解决问题,往往能起到化隐为显、化难为易的解题效果,还考查了学生创造性思维,有利于培养学生分析问题的能力。这里,构造辅助圆实则成了解题的关键。例1、根据题意利用合适的方法求解下列各题:(1)如图1,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时B
2、P的长;(2)如图2,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点.当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ的长。(3)有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安装监控装置,用来监视边AB,现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使∠AMB=60°?若存在,请求出符
3、合条件的DM的长,若不存在,请说明理由.解:(1)①作AD的垂直平分线交BC于点P,如图①,则PA=PD.∴△PAD是等腰三角形.∵四边形ABCD是矩形,∴AB=DC,∠B=∠C=90°.∵PA=PD,AB=DC,∴Rt△ABP≌Rt△DCP(HL).∴BP=CP.∵BC=4,∴BP=CP=2.②以点D为圆心,AD为半径画弧,交BC于点P′,如图①,则DA=DP′.图4∴△P′AD是等腰三角形.∵四边形ABCD是矩形,∴AD=BC,AB=DC,∠C=90°.∵AB=3,BC=4,∴DC=3,DP′=4.∴CP′=√42-
4、32=√7∴BP′=4-√7③点A为圆心,AD为半径画弧,交BC于点P″,如图①,则AD=AP″.∴△P″AD是等腰三角形.同理可得:BP″=√7综上所述:在等腰三角形△ADP中,若PA=PD,则BP=2;若DP=DA,则BP=4-√7;若AP=AD,则BP=√7解(2)∵E、F分别为边AB、AC的中点,∴EF∥BC,EF=1/2BC∵BC=12,∴EF=6.以EF为直径作⊙O,过点O作OQ⊥BC,垂足为Q,连接EQ、FQ,如图②.∵AD⊥BC,AD=6,∴EF与BC之间的距离为3.∴OQ=3∴OQ=OE=3.∴⊙O与B
5、C相切,切点为Q.∵EF为⊙O的直径,∴∠EQF=90°.过点E作EG⊥BC,垂足为G,如图.∵EG⊥BC,OQ⊥BC,∴EG∥OQ.∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,∴四边形OEGQ是正方形.∴GQ=EO=3,EG=OQ=3.∵∠B=60°,∠EGB=90°,EG=3,∴BG=√3∴BQ=GQ+BG=3+√3∴当∠EQF=90°时,BQ的长为3+√3解析:要满足动点M对定线段AB所张的角∠AMB=60°,由此联想到“一条弧所对的圆周角等于它所对的圆心角的一半”,于是可构造以AB为边的等边三角形的外
6、接圆,该圆与线段CD的交点就是满足条件的点,然后借助于等边三角形的性质、特殊角的三角函数值等知识,就可求出符合条件的DM的长。解:(3)在线段CD上存在点M,使∠AMB=60°.理由如下:图6以AB为边,在AB的右侧作等边三角形ABG,作GP⊥AB,垂足为P,作AK⊥BG,垂足为K.设GP与AK交于点O,以点O为圆心,OA为半径作⊙O,过点O作OH⊥CD,垂足为H,如图③.则⊙O是△ABG的外接圆,∵△ABG是等边三角形,GP⊥AB,∴AP=PB=1/2AB∵AB=270,∴AP=135.∵ED=285,∴OH=285-
7、135=150.∵△ABG是等边三角形,AK⊥BG,∴∠BAK=∠GAK=30°以下解法略例2、(2014年山东淄博市中考数学第24题)如图7,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点。(1)使∠APB=30°的点P有 个;(2)若点P在y轴上,且∠APB=30°,求满足条件的点P的坐标;(3)当点P在y轴上移动时,∠APB是否有最大值?若有,求点P的坐标,并说明此时∠APB最大的理由;若没有,也请说明理由。解:(1)以AB为边,在第一象限内作等边三角形ABC,以点C为圆心,AC为半
8、径作⊙C,交y轴于点P1、P2.在优弧AP1B上任取一点P,如图1,则∠APB=∠ACB=×60°=30°.∴使∠APB=30°的点P有无数个.故答案为:无数.(2)①当点P在y轴的正半轴上时,过点C作CG⊥AB,垂足为G,如图1.∵点A(1,0),点B(5,0),∴OA=1,OB=5.∴AB=4.∵点C为圆心,CG
此文档下载收益归作者所有