宁波中考数学第一轮复习第二讲:圆.doc

宁波中考数学第一轮复习第二讲:圆.doc

ID:56748051

大小:887.50 KB

页数:28页

时间:2020-07-07

宁波中考数学第一轮复习第二讲:圆.doc_第1页
宁波中考数学第一轮复习第二讲:圆.doc_第2页
宁波中考数学第一轮复习第二讲:圆.doc_第3页
宁波中考数学第一轮复习第二讲:圆.doc_第4页
宁波中考数学第一轮复习第二讲:圆.doc_第5页
资源描述:

《宁波中考数学第一轮复习第二讲:圆.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第二讲:圆知识梳理知识点一、圆的定义及有关概念[重点:掌握圆的定义及有关概念难点:熟练掌握运用概念1、圆的定义:平面内到定点的距离等于定长的所有点组成的图形叫做圆。2、有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。圆上任意两点间的部分叫做圆弧,简称弧。连接圆上任意两点间的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。在同圆或等圆中,能够重合的两条弧叫做等弧。例.P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为________;最长弦长为_______.解题思路:圆内最长的弦是直径,最短

2、的弦是和OP垂直的弦,答案:10cm,8cm知识点二、平面内点和圆的位置关系重点:掌握平面内点和圆的位置关系及数量关系难点:运用点和圆的位置关系及数量关系平面内点和圆的位置关系有三种:点在圆外、点在圆上、点在圆内当点在圆外时,d>r;反过来,当d>r时,点在圆外。当点在圆上时,d=r;反过来,当d=r时,点在圆上。当点在圆内时,d<r;反过来,当d<r时,点在圆内。例.如图,在中,直角边,,点,分别是,的中点,以点为圆心,的长为半径画圆,则点在圆A的_________,点在圆A的_________.解题思路:利用点与圆的位置关系,答案:外部

3、,内部练习:在直角坐标平面内,圆的半径为5,圆心的坐标为.试判断点与圆的位置关系.答案:点在圆O上.知识点三、圆的基本性质重点:掌握垂径定理、圆心角定理、圆周角定理及推论难点:定理及推论的运用1圆是轴对称图形,其对称轴是任意一条过圆心的直线。2、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦对的弧。3、圆具有旋转对称性,特别的圆是中心对称图形,对称中心是圆心。圆心角定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。4

4、、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。[来源:学科网ZXXK]圆周角定理推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等。圆周角定理推论2:直径所对的圆周角是直角;90°的圆周角所对的弦是直径。例1.如图,在半径为5cm的⊙O中,圆心O到弦AB的距离为3cm,则弦AB的长是()A.4cmB.6cmC.8cmD.10cm解题思路:在一个圆中,若知圆的半径为R,弦长为a,圆心到此弦的距离为d,根据垂径定理,有R2=d2+()2,所以三个量知道两个,就可求出第三个.答案C例2、如图,A、B、C、D是⊙O上的三点,∠BAC=3

5、0°,则∠BOC的大小是()A、60°B、45°C、30°D、15°解题思路:运用圆周角与圆心角的关系定理,答案:A例3、如图1和图2,MN是⊙O的直径,弦AB、CD相交于MN上的一点P,∠APM=∠CPM.(1)由以上条件,你认为AB和CD大小关系是什么,请说明理由.(2)若交点P在⊙O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.(1)(2)解题思路:(1)要说明AB=CD,只要证明AB、CD所对的圆心角相等,只要说明它们的一半相等.上述结论仍然成立,它的证明思路与上面的题目是一模一样的.解:(1)AB=CD理由:过

6、O作OE、OF分别垂直于AB、CD,垂足分别为E、F∵∠APM=∠CPM∴∠1=∠2OE=OF连结OD、OB且OB=OD∴Rt△OFD≌Rt△OEB∴DF=BE根据垂径定理可得:AB=CD(2)作OE⊥AB,OF⊥CD,垂足为E、F∵∠APM=∠CPN且OP=OP,∠PEO=∠PFO=90°∴Rt△OPE≌Rt△OPF∴OE=OF连接OA、OB、OC、OD易证Rt△OBE≌Rt△ODF,Rt△OAE≌Rt△OCF∴∠1+∠2=∠3+∠4∴AB=CD例4.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什

7、么关系?为什么?解题思路:BD=CD,因为AB=AC,所以这个△ABC是等腰,要证明D是BC的中点,只要连结AD证明AD是高或是∠BAC的平分线即可.解:BD=CD理由是:如图24-30,连接AD∵AB是⊙O的直径∴∠ADB=90°即AD⊥BC又∵AC=AB∴BD=CD练习1:AB是⊙O的直径,AC、AD是⊙O的两弦,已知AB=16,AC=8,AD=8,求∠DAC的度数.2.如图,以平行四边形ABCD的顶点A为圆心,AB为半径作圆,分别交BC、AD于E、F,若∠D=50°,求弧BE的度数和弧EF的度数.3.如图,⊙C经过坐标原点,且与两坐标

8、轴分别交于点A与点B,点A的坐标为(0,4),M是圆上一点,∠BMO=120°.(1)求证:AB为⊙C直径.(2)求⊙C的半径及圆心C的坐标._B_A_C答案:1.(1)AC、A

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。