专题05 函数的单调性与最值(教学案)-2019年高考数学(理)热点题型和提分秘籍 Word版含解析.doc

专题05 函数的单调性与最值(教学案)-2019年高考数学(理)热点题型和提分秘籍 Word版含解析.doc

ID:56733675

大小:1.37 MB

页数:15页

时间:2020-07-06

专题05 函数的单调性与最值(教学案)-2019年高考数学(理)热点题型和提分秘籍 Word版含解析.doc_第1页
专题05 函数的单调性与最值(教学案)-2019年高考数学(理)热点题型和提分秘籍 Word版含解析.doc_第2页
专题05 函数的单调性与最值(教学案)-2019年高考数学(理)热点题型和提分秘籍 Word版含解析.doc_第3页
专题05 函数的单调性与最值(教学案)-2019年高考数学(理)热点题型和提分秘籍 Word版含解析.doc_第4页
专题05 函数的单调性与最值(教学案)-2019年高考数学(理)热点题型和提分秘籍 Word版含解析.doc_第5页
资源描述:

《专题05 函数的单调性与最值(教学案)-2019年高考数学(理)热点题型和提分秘籍 Word版含解析.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.理解函数的单调性、最大值、最小值及其几何意义2.会运用基本初等函数的图象分析函数的性质热点题型一函数单调性的判定与证明例1、(2018年全国Ⅱ卷理数)若在是减函数,则的最大值是A.B.C.D.【答案】A【变式探究】【2017北京,理5】已知函数,则(A)是奇函数,且在R上是增函数(B)是偶函数,且在R上是增函数(C)是奇函数,且在R上是减函数(D)是偶函数,且在R上是减函数【答案】A【解析】,所以该函数是奇函数,并且是增函数,是减函数,根据增函数−减函数=增函数,可知该函数是增函数,故选A.【提分秘籍】判断(或

2、证明)函数单调性的主要方法(1)函数单调性的定义;(2)观察函数的图象;(3)利用函数和、差、积、商和复合函数单调性的判断法则;(4)利用导数等。其中(2)(3)一般用于选择、填空题。【举一反三】试讨论函数f(x)=(a≠0)在(-1,1)上的单调性。【解析】设-1<x1<x2<1,f(x)=a=a,f(x1)-f(x2)=a-a=a,由于-1<x1<x2<1,热点题型二求函数的单调区间例2、(2018年天津卷)已知函数,,其中a>1.(I)求函数的单调区间;【答案】(Ⅰ)单调递减区间,单调递增区间为;【解析】(I

3、)由已知,,有.令,解得x=0.由a>1,可知当x变化时,,的变化情况如下表:x00+极小值所以函数的单调递减区间为,单调递增区间为.【变式探究】求下列函数的单调区间。(1)f(x)=-x2+2

4、x

5、+3;(2)f(x)=log(-x2-2x+3);(3)y=;(4)y=3x2-6lnx。【解析】(1)∵f(x)=其图象如图1所示,所以函数y=f(x)的单调递增区间为(-∞,-1]和[0,1];单调递减区间为[-1,0]和[1,+∞)。图1图2(2)设u=-x2-2x+3(u>0),其图象如图2所示。∵0<<1,∴

6、f(x)的单调增区间就是u(x)=-x2-2x+3(u>0)的单调减区间[-1,1);单调减区间就是u(x)的单调增区间(-3,-1]。【提分秘籍】求函数单调区间的常用方法(1)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间。(2)定义法:先求定义域,再利用单调性定义。(3)图象法:如果f(x)是以图象形式给出的,或者f(x)的图象易作出,可由图象的直观性写出它的单调区间。(4)导数法:利用导数取值的正负确定函数的单调区间。(5)求复合函数的单调区间的一般步骤是:①求函数的定义域;②求简单函数

7、的单调区间;③求复合函数的单调区间,依据是“同增异减”。【举一反三】求出下列函数的单调区间。(1)f(x)=

8、x2-4x+3

9、;(2)f(x)=log2(x2-1);(3)f(x)=;【解析】(1)先作出函数y=x2-4x+3的图象,由于绝对值的作用,把x轴下方的部分翻折到上方,可得函数y=

10、x2-4x+3

11、的图象,如图所示。由图可知,f(x)在(-∞,1)和(2,3]上为减函数,在[1,2]和(3,+∞)上为增函数,故f(x)的增区间为[1,2],(3,+∞),减区间为(-∞,1),(2,3]。热点题型三函数单调

12、性的应用例3.(1)已知函数f(x)的图象向左平移1个单位后关于y轴对称,当x2>x1>1时,[f(x2)-f(x1)]·(x2-x1)<0恒成立,设a=f,b=f(2),c=f(3),则a,b,c的大小关系为(  )A.c>a>b   B.c>b>aC.a>c>bD.b>a>c(2)定义在R上的奇函数y=f(x)在(0,+∞)上递增,且f=0,则满足f(logx)>0的x的集合为________。【答案】(1)D(2){x

13、0<x<或1<x<3}【解析】(1)由于函数f(x)的图象向左平移1个单位后得到的图象关于

14、y轴对称,故函数y=f(x)的图象本身关于直线x=1对称,所以a=f=f。当x2>x1>1时,[f(x2)-f(x1)](x2-x1)<0恒成立,等价于函数f(x)在(1,+∞)上单调递减,所以b>a>c。故选D。(2)由奇函数y=f(x)在(0,+∞)上递增,且f=0,得函数y=f(x)在(-∞,0)上递增,且f=0。由f(logx)>0,得logx>或-<logx<0,解得0<x<或1<x<3.所以满足条件的x的取值集合为{x

15、0<x<或1<x<3}。【提分秘籍】1.含“f”不等式的解法首先根据函数的性质把不等

16、式转化为f(g(x))>f(h(x))的形式,然后根据函数的单调性去掉“f”,转化为具体的不等式(组),此时要注意g(x)与h(x)的取值应在外层函数的定义域内。2.比较函数值大小的思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图象法求解。3.求参数的值或取值范

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。