欢迎来到天天文库
浏览记录
ID:56686734
大小:285.01 KB
页数:8页
时间:2020-07-04
《初中数学复习 圆与圆的位置关系.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、专题23圆与圆的位置关系【阅读与思考】两圆的半径与圆心距的大小量化确定圆与圆的外离、外切、相交、内切、内含五种位置关系.圆与圆相交、相切等关系是研究圆与圆位置关系的重点,解题中经常用到相关性质.解圆与圆的位置关系问题,往往需要添加辅助线,常用的辅助线有:1.相交两圆作公共弦或连心线;2.相切两圆作过切点的公切线或连心线;3.有关相切、相离两圆的公切线问题常设法构造相应的直角三角形.熟悉以下基本图形和以上基本结论.【例题与求解】【例1】如图,大圆⊙O的直径cm,分别以OA,OB为直径作⊙O1和⊙O2,并在⊙O与⊙O1和⊙O2的
2、空隙间作两个等圆⊙O3和⊙O4,这些圆互相内切或外切,则四边形的面积为________cm2.(全国初中数学竞赛试题)解题思路:易证四边形为菱形,求其面积只需求出两条对角线的长.【例2】如图,圆心为A,B,C的三个圆彼此相切,且均与直线相切.若⊙A,⊙B,8⊙C的半径分别为,,(),则,,一定满足的关系式为()A.B.C.D.(天津市竞赛试题)解题思路:从两圆相切位置关系入手,分别探讨两圆半径与分切线的关系,解题的关键是作圆的基本辅助线.【例3】如图,已知两圆内切于点P,大圆的弦AB切小圆于点C,PC的延长线交大圆于点D.求
3、证:(1)∠APD=∠BPD;(2).(天津市中考试题)解题思路:对于(1),作出相应辅助线;对于(2),应化简待证式的右边,不妨从AC·BC=PC·CD入手.【例4】如图⊙O1和⊙O2相交于点A及B处,⊙O1的圆心落在⊙O2的圆周上,⊙O1的弦AC与⊙O2交于点D.求证:O1D⊥BC.(全俄中学生九年级竞赛试题)解题思路:连接AB,O1B,O1C,显然△O1BC为等腰三角形,若证O1D⊥BC,只需证明O1D平分∠BO1C.充分运用与圆相关的角.【例5】如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,
4、DC=,点P在边BC8上运动(与B,C不重合).设PC=,四边形ABPD的面积为.(1)求关于的函数关系式,并写出自变量的取值范围;(2)若以D为圆心,为半径作⊙D,以P为圆心,以PC的长为半径作⊙P,当为何值时,⊙D与⊙P相切?并求出这两圆相切时四边形ABPD的面积.(河南省中考题)解题思路:对于(2),⊙P与⊙D既可外切,也可能内切,故需分类讨论,解题的关键是由相切两圆的性质建立关于的方程.【例6】如图,ABCD是边长为的正方形,以D为圆心,DA为半径的圆弧与以BC为直径的半圆交于另一点P,延长AP交BC于点N,求的值.
5、(全国初中数学联赛试题)解题思路:AB为两圆的公切线,BC为直径,怎样产生比例线段?丰富的知识,不同的视角激活想象,可生成解题策略与方法.8【能力与训练】A级1.如图,⊙A,⊙B的圆心A,B在直线上,两圆的半径都为1cm.开始时圆心距AB=4cm,现⊙A,⊙B同时沿直线以每秒2cm的速度相向移动,则当两圆相切时,⊙A运动的时间为_______秒.(宁波市中考试题)2.如图,O2是⊙O1上任意一点,⊙O1和⊙O2相交于A,B两点,E为优弧AB上的一点,EO2及延长线交⊙O2于C,D,交AB于F,且CF=1,EC=2,那么⊙O2
6、的半径为_______.(四川省中考试题)(第1题图)(第2题图)(第3题图)3.如图,半圆O的直径AB=4,与半圆O内切的动圆O1与AB切于点M.设⊙O1的半径为,AM的长为,则与的函数关系是_________________.(要求写出自变量的取值范围)(昆明市中考试题)4.已知直径分别为和的两个圆,它们的圆心距为,这两圆的公切线的条数是__________.5.如图,⊙O1和⊙O2相交于点A,B,且⊙O2的圆心O2在圆⊙O1的圆上,P是⊙O2上一点.已知∠AO1B=60°,那么∠APB的度数是()A.60°B.65°C
7、.70°D.75°(甘肃省中考试题)6.如图,两圆相交于A、B两点,过点B的直线与两圆分别交于C,D两点.若⊙O1半径为,⊙O2的半径为2,则AC:AD为()A.B.C.D.(第5题图)(第6题图)(第7题图)7.如图,⊙O1和⊙O2外切于点T,它们的半径之比为3:2,AB是它们的外公切线,A,B是切点,AB=,那么⊙O1和⊙O2的圆心距是()A.B.10C.D.88.已知两圆的半径分别为R和(),圆心距为.若关于的方程有两相等的实数根,那么这两圆的位置关系是()A.外切B.内切C.外离D.外切或内切(连云港市中考试题)9.
8、如图,⊙O1与⊙O2相交于A,B两点,点O1在⊙O2上,点C为⊙O1中优弧上任意一点,直线CB交⊙O2于D,连接O1D.(1)证明:DO1⊥AC;(2)若点C在劣弧上,(1)中的结论是否仍成立?请在图中画出图形,并证明你的结论.(大连市中考试题)图1图210.如图,已知⊙O1与⊙O2外切于
此文档下载收益归作者所有