高中数学第一章集合与函数概念1.3函数的基本性质知识导学案新人教A版必修.doc

高中数学第一章集合与函数概念1.3函数的基本性质知识导学案新人教A版必修.doc

ID:56682521

大小:50.50 KB

页数:4页

时间:2020-07-04

高中数学第一章集合与函数概念1.3函数的基本性质知识导学案新人教A版必修.doc_第1页
高中数学第一章集合与函数概念1.3函数的基本性质知识导学案新人教A版必修.doc_第2页
高中数学第一章集合与函数概念1.3函数的基本性质知识导学案新人教A版必修.doc_第3页
高中数学第一章集合与函数概念1.3函数的基本性质知识导学案新人教A版必修.doc_第4页
资源描述:

《高中数学第一章集合与函数概念1.3函数的基本性质知识导学案新人教A版必修.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.3函数的基本性质知识导学函数的单调性是对区间而言的,它是“局部”性质,不同于函数的奇偶性,函数的奇偶性是对整个定义域而言的,即是“整体”性质.对某一函数y=f(x),它在某区间上可能有单调性,也可能没有单调性;即使是同一个函数它在某区间上可能单调递增,而在另外一区间上可能单调递减;对某一函数y=f(x),它在区间(a,b)与(c,d)上都是单调增(减)函数,不能说y=f(x)在(a,b)∪(c,d)上一定是单调增(减)函数,即函数的单调性是针对定义域内的某个区间而言的.例如函数y=在(-∞,0)上是减函数,在(0,+∞)上也是减函数,但不能说它在整个定义

2、域即(-∞,0)∪(0,+∞)上是减函数,因为当取x1=-1,x2=1时,对应的函数值为f(x1)=-1,f(x2)=1,显然有x1

3、(3)定义域关于原点对称,且满足f(-x)=f(x)或f(-x)=-f(x)的函数才是偶函数或奇函数.函数奇偶性的应用:(1)利用奇偶性求有关函数值;(2)利用奇偶性求有关函数的解析式;(3)利用奇偶性研究函数的其他性质.另外,由奇(偶)函数图象的特征并结合函数单调性的定义不难得到:(1)奇(偶)函数在关于原点对称的区间上,具有相同(反)的单调性;(2)若奇函数f(x)在区间[a,b](0

4、间,如函数:f(x)=5x,x∈{1,2,3}.再者,因为一个固定点的函数值不会发生变化,所以函数的单调性不在某一个点去讨论,即使在定义域内,也不可以随便把单调区间写成闭区间(比如一些函数的区间端点正好是不连续的点).(1)在这个区间上的x1、x2必须是任意的.(2)增函数自变量和函数值的关系是“大对大,小对小”,可以用“荣辱与共”这个词形容.(3)说增函数必须谈及区间,脱离区间谈增函数是没有意义的.(4)定义的内涵与外延:内涵是用自变量的大小变化来刻画函数值的变化情况;外延:①一般规律:自变量的变化与函数值的变化一致时是单调递增,自变量的变化与函数值的变化

5、相对时是单调递减.②几何特征:在自变量取值区间上,若单调函数的图象上升,则为增函数,图象下降则为减函数.若f(x)、g(x)都为增函数(减函数),则f(x)+g(x)为增函数(减函数).若f(x)为增函数,g(x)为减函数,则f(x)-g(x)为增函数;若f(x)为减函数,g(x)为增函数,则f(x)-g(x)为减函数.奇函数在对称区间上的单调性相同;偶函数在对称区间上的单调性相反.奇函数和偶函数还具有以下性质:(1)两个奇函数的和(差)仍是奇函数,两个偶函数的和(差)仍是偶函数.(2)奇偶性相同的两个函数的积(商、分母不为零)为偶函数,奇偶性相反的两个函数

6、的积(商、分母不为零)为奇函数.(3)奇函数在其定义域的对称区间上单调性相同,偶函数在其定义域的对称区间上单调性相反.(4)定义域关于原点对称的函数f(x)可以表示成一个奇函数与一个偶函数的和,即f(x)=.(5)若f(x)是(-a,a)(a>0)上的奇函数,则f(0)=0.问题导思函数的单调性是针对定义域内某个区间而言的,是函数的“局部”性质.在几个不同区间的单调性并不意味着在这几个区间并集上也具有同样的单调性,必须严格按照函数单调性的定义加以证明才可以得出结论.一个函数具有奇偶性的前提条件是它的定义域关于原点对称,即定义域关于原点对称是函数为偶(或奇)函

7、数的必要条件,这是奇、偶函数的本质属性之一.奇函数在其定义域的对称区间上单调性相同,偶函数在其定义域的对称区间上单调性相反.关于奇偶性的几个命题:命题1函数的定义域关于原点对称,是函数为奇函数或偶函数的必要不充分条件.如果函数的定义域不关于原点对称,那么函数一定是非奇非偶函数,这一点可以由奇偶性定义直接得出.命题2函数f(x)+f(-x)是偶函数,函数f(x)-f(-x)是奇函数.由函数奇偶性易证.命题3已知函数f(x)是奇函数,且f(0)有定义,则f(0)=0.由奇函数的定义易证.命题4已知f(x)是奇函数或偶函数,方程f(x)=0有实根,那么方程f(x)

8、=0的所有实根之和为零;若f(x)是定义在实数集上的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。