欢迎来到天天文库
浏览记录
ID:56680124
大小:633.50 KB
页数:10页
时间:2020-07-04
《高中数学 第二讲 直线与园的位置关系 二 圆内接四边形的性质与判定定理学案(含解析)新人教A版选修.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二圆内接四边形的性质与判定定理1.圆内接四边形的性质(1)圆的内接四边形对角互补.如图,四边形ABCD内接于⊙O,则有:∠A+∠C=180°,∠B+∠D=180°.(2)圆内接四边形的外角等于它的内角的对角.如图,∠CBE是圆内接四边形ABCD的一外角,则有∠CBE=∠D.2.圆内接四边形的判定(1)判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆.(2)推论:如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆.圆内接四边形的性质 如图,AB是⊙O的直径,弦BD,CA的延长线相
2、交于点E,EF垂直BA的延长线于点F.求证:∠DEA=∠DFA. 本题主要考查圆内接四边形判定及性质的应用.解题时,证A,D,E,F四点共圆后可得结论. 连接AD,因为AB为圆的直径,所以∠ADB=90°.又EF⊥AB,∠EFA=90°,所以A,D,E,F四点共圆.所以∠DEA=∠DFA.圆内接四边形的性质即对角互补,一个外角等于其内角的对角,可用来作为三角形相似的条件,从而证明一些比例式成立或证明某些等量关系.1.圆内接四边形ABCD中,已知∠A,∠B,∠C的度数比为4∶3∶5,求四边形各角的度数.解:设∠A
3、,∠B,∠C的度数分别为4x,3x,5x,则由∠A+∠C=180°,可得4x+5x=180°,∴x=20°.∴∠A=4×20°=80°,∠B=3×20°=60°,∠C=5×20°=100°,∠D=180°-∠B=120°.2.已知:如图,四边形ABCD内接于圆,延长AD,BC相交于点E,点F是BD的延长线上的点,且DE平分∠CDF.(1)求证:AB=AC;(2)若AC=3cm,AD=2cm,求DE的长.解:(1)证明:∵∠ABC=∠2,∠2=∠1=∠3,∠4=∠3,∴∠ABC=∠4.∴AB=AC.(2)∵∠3=
4、∠4=∠ABC,∠DAB=∠BAE,∴△ABD∽△AEB.∴=.∵AB=AC=3cm,AD=2cm,∴AE==cm.∴DE=-2=(cm).圆内接四边形的判定 如图,在△ABC中,E,D,F分别为AB,BC,AC的中点,且AP⊥BC于P.求证:E,D,P,F四点共圆. 可先连接PF,构造四边形EDPF的外角∠FPC,证明∠FPC=∠C,再证明∠FPC=∠FED即可. 如图,连接PF,∵AP⊥BC,F为AC的中点,∴PF=AC.∵FC=AC,∴PF=FC.∴∠FPC=∠C.∵E,F,D分别为AB,AC,BC的中点
5、.∴EF∥CD,ED∥FC.∴四边形EDCF为平行四边形,∴∠FED=∠C.∴∠FPC=∠FED.∴E,D,P,F四点共圆.证明四点共圆的常见方法:(1)如果四点与一定点等距离,那么这四点共圆;(2)如果四边形的一组对角互补,那么这个四边形的四个顶点共圆;(3)如果四边形的一个外角等于它的内对角,那么这个四边形的四个顶点共圆;(4)如果两个三角形有公共边,公共边所对的角相等且在公共边的同侧,那么这两个三角形的四个顶点共圆.3.判断下列各命题是否正确.(1)任意三角形都有一个外接圆,但可能不止一个;(2)矩形有唯
6、一的外接圆;(3)菱形有外接圆;(4)正多边形有外接圆.解:(1)错误,任意三角形有唯一的外接圆;(2)正确,矩形对角线的交点到各顶点的距离相等;(3)错误,只有当菱形是正方形时才有外接圆;(4)正确,正多边形的中心到各顶点的距离相等.4.已知:在△ABC中,AD=DB,DF⊥AB交AC于点F,AE=EC,EG⊥AC交AB于点G.求证:(1)D,E,F,G四点共圆;(2)G,B,C,F四点共圆.证明:(1)如图,连接GF,由DF⊥AB,EG⊥AC,知∠GDF=∠GEF=90°,∴GF中点到D,E,F,G四点距离
7、相等,∴D,E,F,G四点共圆.(2)连接DE.由AD=DB,AE=EC,知DE∥BC,∴∠ADE=∠B.又由(1)中D,E,F,G四点共圆,∴∠ADE=∠GFE.∴∠GFE=∠B.∴G,B,C,F四点共圆.圆内接四边形的综合应用 (新课标全国卷Ⅱ)如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC·AE=DC·AF,B,E,F,C四点共圆.(1)证明:CA是△ABC外接圆的直径;(2)若DB=BE=EA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积
8、的比值. (1)要证CA是△ABC外接圆的直径,只需证∠ABC为直角;(2)要求两圆的面积比,可先求两圆的直径比. (1)证明:因为CD为△ABC外接圆的切线,所以∠DCB=∠A.由题设知=,故△CDB∽△AEF,所以∠DBC=∠EFA.因为B,E,F,C四点共圆,所以∠CFE=∠DBC,故∠EFA=∠CFE=90°.所以∠CBA=90°,因此CA是△ABC外接圆的直径.(2)连接CE
此文档下载收益归作者所有