欢迎来到天天文库
浏览记录
ID:56679944
大小:211.00 KB
页数:4页
时间:2020-07-04
《高中数学 第二章 随机变量及其分布 2.3.2 离散型随机变量的方差学案新人教A版选修.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.3.2离散型随机变量的方差知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。教学重点:离散型随机变量的方差、标准差一、复习引入:1.随机变量:2.离散型随机变量:3.连续型随机变量:4.离散型随机变量与连续型随机变量的区别与联系:5.分布列:ξx1x2…xi…PP1P2…Pi…6.分布列的两个性质:⑴Pi≥0,i=1,2,…;⑵P1+P2+…=1.7.二项分布:ξ~B(n,p),并记=b(k;n,p).ξ01…k…nP……8.几何分布:g(k,p)=,其中k=0,1,2,…,.ξ123…k…P……9.数学期望:一般地,若
2、离散型随机变量ξ的概率分布为ξx1x2…xn…Pp1p2…pn…则称……为ξ的数学期望,简称期望. 10.数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平11平均数、均值:在有限取值离散型随机变量ξ的概率分布中,令…,则有…,…,所以ξ的数学期望又称为平均数、均值12.期望的一个性质:13.若ξ~B(n,p),则Eξ=np二、讲解新课:1.方差:对于离散型随机变量ξ,如果它所有可能取的值是,,…,,…,且取这些值的概率分别是,,…,,…,那么,=++…++…称为随机变量ξ的均方差,简称为方差,式中的是随机变量ξ的期望.2.标准差:的算术平方根叫
3、做随机变量ξ的标准差,记作.3.方差的性质:(1);(2);(3)若ξ~B(n,p),则np(1-p)4.其它:⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的;⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛三、讲解范例:例1.随机抛掷一枚质地均匀的骰子,求向上一面的点数的均值、方差和标准差.解:例2.有甲乙两个单位都愿意聘用你,而你能获得如下信息:甲单位不同职位月工资X1/元1200140016001800获得相应职位的概率P10.40.30
4、.20.1乙单位不同职位月工资X2/元1000140018002000获得相应职位的概率P20.40.30.20.1根据工资待遇的差异情况,你愿意选择哪家单位?解:例3.设随机变量ξ的分布列为ξ12…nP…求Dξ解:例4.已知离散型随机变量的概率分布为1234567P离散型随机变量的概率分布为3.73.83.944.14.24.3P求这两个随机变量期望、均方差与标准差解:例5.甲、乙两射手在同一条件下进行射击,分布列如下:射手甲击中环数8,9,10的概率分别为0.2,0.6,0.2;射手乙击中环数8,9,10的概率分别为0.4,0.2,0.24用击中环数的期望与方差比较两
5、名射手的射击水平解:例6.A、B两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示:A机床B机床次品数ξ10123次品数ξ10123概率P0.70.20.060.04概率P0.80.060.040.10问哪一台机床加工质量较好解:当堂训练:1.已知,则的值分别是()A.; B.; C.; D.2.一盒中装有零件12个,其中有9个正品,3个次品,从中任取一个,如果每次取出次品就不再放回去,再取一个零件,直到取得正品为止.求在取得正品之前已取出次品数的期望.解:
此文档下载收益归作者所有