欢迎来到天天文库
浏览记录
ID:37075470
大小:218.20 KB
页数:15页
时间:2019-05-16
《高中数学随机变量及其分布2.3离散型随机变量的均值与方差2.3.2离散型随机变量的方差学案新人教a版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.3.2 离散型随机变量的方差学习目标 1.理解取有限个值的离散型随机变量的方差及标准差的概念.2.能计算简单离散型随机变量的方差,并能解决一些实际问题.3.掌握方差的性质,以及两点分布、二项分布的方差的求法,会利用公式求它们的方差.知识点一 方差、标准差的定义及方差的性质甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为X和Y,X和Y的分布列如下:X012PY012P思考1 试求E(X),E(Y).答案 E(X)=0×+1×+2×=,E(Y)=0×+1×+2×=.思考2 能否由E(X)与E(Y)的值比较两名工人
2、技术水平的高低?答案 不能,因为E(X)=E(Y).思考3 试想用什么指标衡量甲、乙两名工人技术水平的高低?答案 方差.梳理 (1)方差及标准差的定义设离散型随机变量X的分布列为Xx1x2…xi…xnPp1p2…pi…pn①方差:D(X)=(xi-E(X))2pi;②标准差:.(2)方差与标准差的意义随机变量的方差和标准差都反映了随机变量的取值偏离于均值的平均程度.方差或标准差越小,则随机变量偏离于均值的平均程度越小.(3)方差的性质:D(aX+b)=a2D(X).知识点二 两点分布与二项分布的方差XX服从两点分布X~B(n,p)D(X
3、)p(1-p)(其中p为成功概率)np(1-p)1.离散型随机变量的方差越大,随机变量越稳定.( × )2.若a是常数,则D(a)=0.( √ )3.离散型随机变量的方差反映了随机变量偏离于均值的平均程度.( √ )类型一 求随机变量的方差与标准差例1 已知X的分布列如下:X-101Pa(1)求X2的分布列;(2)计算X的方差;(3)若Y=4X+3,求Y的均值和方差.考点 离散型随机变量方差的性质题点 方差性质的应用解 (1)由分布列的性质,知++a=1,故a=,从而X2的分布列为X201P(2)方法一 由(1)知a=,所以X的均值E(
4、X)=(-1)×+0×+1×=-.故X的方差D(X)=2×+2×+2×=.方法二 由(1)知a=,所以X的均值E(X)=(-1)×+0×+1×=-,X2的均值E(X2)=0×+1×=,所以X的方差D(X)=E(X2)-[E(X)]2=.(3)因为Y=4X+3,所以E(Y)=4E(X)+3=2,D(Y)=42D(X)=11.反思与感悟 方差的计算需要一定的运算能力,公式的记忆不能出错!在随机变量X2的均值比较好计算的情况下,运用关系式D(X)=E(X2)-[E(X)]2不失为一种比较实用的方法.另外注意方差性质的应用,如D(aX+b)=a
5、2D(X).跟踪训练1 已知η的分布列为η010205060P(1)求方差及标准差;(2)设Y=2η-E(η),求D(Y).考点 离散型随机变量方差的性质题点 方差性质的应用解 (1)∵E(η)=0×+10×+20×+50×+60×=16,∴D(η)=(0-16)2×+(10-16)2×+(20-16)2×+(50-16)2×+(60-16)2×=384,∴=8.(2)∵Y=2η-E(η),∴D(Y)=D(2η-E(η))=22D(η)=4×384=1536.类型二 两点分布与二项分布的方差例2 为防止风沙危害,某地决定建设防护绿化带,
6、种植杨树、沙柳等植物.某人一次种植了n株沙柳,各株沙柳的成活与否是相互独立的,成活率为p,设ξ为成活沙柳的株数,均值E(ξ)为3,标准差为.(1)求n和p的值,并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.考点 三种常用分布的方差题点 二项分布的方差解 由题意知,ξ~B(n,p),P(ξ=k)=Cpk(1-p)n-k,k=0,1,…,n.(1)由E(ξ)=np=3,D(ξ)=np(1-p)=,得1-p=,从而n=6,p=.ξ的分布列为ξ0123456P(2)记“需要补种沙柳”为事件A,则P(A
7、)=P(ξ≤3),得P(A)=+++=,或P(A)=1-P(ξ>3)=1-=,所以需要补种沙柳的概率为.反思与感悟 解决此类问题第一步是判断随机变量ξ服从什么分布,第二步代入相应的公式求解.若ξ服从两点分布,则D(ξ)=p(1-p);若ξ服从二项分布,即ξ~B(n,p),则D(ξ)=np(1-p).跟踪训练2 某厂一批产品的合格率是98%.(1)计算从中抽取一件产品为正品的数量的方差;(2)从中有放回地随机抽取10件产品,计算抽出的10件产品中正品数的方差及标准差.考点 三种常用分布的方差题点 二项分布的方差解 (1)用ξ表示抽得的正品
8、数,则ξ=0,1.ξ服从两点分布,且P(ξ=0)=0.02,P(ξ=1)=0.98,所以D(ξ)=p(1-p)=0.98×(1-0.98)=0.0196.(2)用X表示抽得的正品数,则X~B(10,0.98
此文档下载收益归作者所有