欢迎来到天天文库
浏览记录
ID:56676071
大小:85.50 KB
页数:2页
时间:2020-07-04
《高中数学 3.4 基本不等式(第5课时)学案 文 新人教A版必修.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.4.5基本不等式(第5课时)【学习目标】会应用均值不等式解决一些简单的实际问题【典型例题】例1(1)用篱笆围成一个面积为100m的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短.最短的篱笆是多少?(2)长为36m的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?例2某工厂要建造一个长方体无盖贮水池,其容积为4800m3,深为3m,如果池底每1m2的造价为150元,池壁每1m2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?例3如图,为处理含有某种杂质的污水,要制造一个底宽2米的无盖长方体的沉淀箱,污水从A孔流入,经沉淀
2、后从B孔流出,设箱体的长度为a米,高度为b米,已知流出的水中该杂质的质量份数与a、b的乘积ab成反比现有制箱材料60平方米,问a、b各为多少米时,经沉淀后流出的水中该杂质的质量份数最小(A、B孔面积忽略不计)分析:应用题的最值问题,主要是选取适当的变量,再依据题设,建立数学模型(即函数关系式),由变量和常量之间的关系,选取基本不等式求最值例4用一块钢锭烧铸一个厚度均匀,且表面积为2平方米的正四棱锥形有盖容器(如右图)设容器高为h米,盖子边长为a米,(1)求a关于h的解析式;(2)设容器的容积为V立方米,则当h为何值时,V最大?求出V的最大值(求解本题时,不计容器厚度)【课堂检测】1.若直角三角
3、形周长为1,求它的面积最大值.2.设计一幅宣传画,要求画面面积为4840cm2,画面的宽与高的比为λ(λ<1),画面的上下各留8cm空白,左、右各留5cm空白,怎样确定画面的高与宽尺寸,能使宣传画所用纸张面积最小?
此文档下载收益归作者所有