高中数学 1.6用样本的数字特征估计总体的数字特征(二)导学案 北师大版必修.doc

高中数学 1.6用样本的数字特征估计总体的数字特征(二)导学案 北师大版必修.doc

ID:56672264

大小:394.00 KB

页数:10页

时间:2020-07-03

高中数学 1.6用样本的数字特征估计总体的数字特征(二)导学案 北师大版必修.doc_第1页
高中数学 1.6用样本的数字特征估计总体的数字特征(二)导学案 北师大版必修.doc_第2页
高中数学 1.6用样本的数字特征估计总体的数字特征(二)导学案 北师大版必修.doc_第3页
高中数学 1.6用样本的数字特征估计总体的数字特征(二)导学案 北师大版必修.doc_第4页
高中数学 1.6用样本的数字特征估计总体的数字特征(二)导学案 北师大版必修.doc_第5页
资源描述:

《高中数学 1.6用样本的数字特征估计总体的数字特征(二)导学案 北师大版必修.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第一章统计第八课时1.6用样本的数字特征估计总体的数字特征(二)一、学习三维目标1、知识与技能(1)能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.(2)会用样本的基本数字特征估计总体的基本数字特征.(3)形成对数据处理过程进行初步评价的意识.2、过程与方法在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法.3、情感态度与价值观会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辨证地理解数学知识与现实世界的联系.二、学习重点:用样本平均数和标准差估计

2、总体的平均数与标准差.三、学习难点:能应用相关知识解决简单的实际问题.新课导入设计导入一在日常生活中,我们往往并不需要了解总体的分布形态,而是更关心总体的某一数字特征,例如:买灯泡时,我们希望知道灯泡的平均使用寿命,我们怎样了解灯泡的使用寿命呢?当然不能把所有灯泡一一测试,因为测试后灯泡则报废了.于是,需要通过随机抽样,把这批灯泡的寿命看作总体,从中随机取出若干个个体作为样本,算出样本的数字特征,用样本的数字特征来估计总体的数字特征.导入二用随机抽样的方法获得样本,我们就会得到一组数据,统计思想的本质就是用样本估计总体.用样本估计总体,一般有两种方法:一是用样本的频率分布估计总体分布;

3、二是用样本的数字特征估计总体的数字特征.第一种方法我们已经学习了啦,本节我们继续学习第二种方法.学习流程:通过具体实例理解众数,中位数,平均数↓从频率分布直方图估计众数↓从频率分布直方图估计中位数↓从频率分布直方图估计平均数↓问题探究↓小结、作业学习情境设计:1.创设情景,揭示课题上一节我们学习了用图、表组织样本数据,并且学习了如何通过图、表提供的信息,用样本的频率分布估计总体的分布.在日常生活中,我们往往并不需要了解总体的分布形态,而是关心总体的某一数字特征,例如:居民月均用水量问题,我们关心的是数字,而不是总体的分布形态.因此我们要通过样本的数据对总体的数字特征进行研究.——用样本

4、的数字特征估计总体的数字特征(板出课题).2.探究:(1)怎样将各个样本数据汇总为一个数值,并使它成为样本数据的“中心点”?我们初中时学习众数、中位数、平均数等数字特征.我们共同回忆一下?什么是众数、中位数、平均数?众数—一一组数中出现次数最多的数.中位数——将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.平均数——将所有数相加再除以这组数的个数,所得到得数.热身训练:求下列各组数据的众数、中位数、平均数(1)1,2,3,3,3,4,6,7,7,8,8,8(2)1,2,3,3,3,4,6,7,8,9,9例如,在上一节抽样调查的100

5、位居民的月均用水量的数据中,我们如何得知这一组样本数据的众数、中位数和平均数?众数=2.3(t)、中位数=2.0(t)、平均数=1.973(t)那么从频率分布直方图你能得到这些数据的众数,中位数,平均数吗?3.如何在频率直方图中估计众数、中位数、平均数呢?1)如何从频率分布直方图中估计众数?4.50.52.521.5143.5300.10.20.30.40.6月均用水量/t0.5学生交流讨论,回答从频率分布直方图可以看出:月均用水量的众数是2.25t(最高的矩形的中点),它告诉我们,该市的月均用水量为2.25t的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少.思考1

6、:请大家看看原来抽样的数据,有没有2.25 这个数值呢?根据众数的定义,2.25怎么会是众数呢?为什么?表2-1100为居民的月均用水量(单位:t)2.20.61.81.21.01.52.02.22.52.82.40.81.71.01.01.62.12.32.62.52.40.51.51.21.41.72.12.42.72.62.30.91.61.31.31.82.32.32.82.52.00.71.81.41.31.92.42.42.93.04.30.81.93.51.41.82.32.42.93.24.10.61.73.61.31.72.22.32.83.33.80.51.53.7

7、1.21.62.12.32.73.20.40.30.40.21.21.52.22.22.63.41.61.91.81.61.01.52.02.02.53.1请学生思考交流,回答这是因为样本数据的频率分布直方图把原始的一些数据给遗失的原因,而2.25是由样本数据的频率分布直方图得来的,所以存在一些偏差.显然通过频率分布直方图的估计精度较低,其估计结果与数据分组有关,在不能得到样本数据,只能得到频率分布直方图的情况下,也可以估计总体的特征.归纳总结

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。