欢迎来到天天文库
浏览记录
ID:56672085
大小:133.50 KB
页数:2页
时间:2020-07-03
《高中数学 1.3函数的单调性与导数学案理 新人教版选修.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.3.1函数的单调性与导数(一)【学习目标】1.理解可导函数的单调性与其导数的关系.2.能够利用导数确定函数的单调性,以及函数的单调区间.3.掌握函数单调性解决有关问题,如证明不等式、求参数范围等.【自主学习】1.函数的单调性与导数的关系是什么?2.如果,那么函数在这个区间内是什么函数?如果一个函数具有相同单调性的单调区间不只一个,那么这些单调区间应该怎么表示?3.若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)>0,则f(x)在该区间是增还是减函数?在某一区间内f′(x)>0(或f′(x)<0)是函数f(x)在该区间上为增(或减)函数的什么条件?4.一般地,如果一个函
2、数在某一范围内的导数的大小与函数在这个范围内变化得快慢存在什么关系?与函数的图象“陡峭”、“平缓”又存在什么关系?5.求解函数单调区间的步骤是什么?6.已知函数y=f(x),x∈[a,b]的单调性,求参数的取值范围的步骤是什么?【自主检测】1.函数的单调递增区间是()A.B.(0,3)C.(1,4)D.2.函数的单调减区间为.3.函数在(0,)内的单调增区间为.【典型例题】例1.判断下列函数的单调性,并求出单调区间,最后画出函数的图像.(1);(2)(3);(4)例2.已知函数f(x)=ax3+3x2-x+1在R上是减函数,求实数a的取值范围.例3.已知函数的图象过点P(0,2),且在点
3、M(-1,f(-1))处的切线方程为.(Ⅰ)求函数的解析式;(Ⅱ)求函数的单调区间.【课堂检测】1.若,则的解集为()A.B.C.D.2.若函数在定义域内是增函数,则实数的取值范围是.3.函数,,在区间内是减函数,则的取值范围.4.已知在区间[0,1]上是增函数,在区间上是减函数,又求的解析式.【总结提升】了解可导函数的单调性与其导数正负的关系,并能利用导数研究函数的单调性求函数的单调区间。求函数的单调区间时,首先要确定函数的定义域,然后求导并解不等式.
此文档下载收益归作者所有