高中数学 1.3第9课时 函数的单调性与导数(2)教案 理 新人教A版选修.doc

高中数学 1.3第9课时 函数的单调性与导数(2)教案 理 新人教A版选修.doc

ID:56672107

大小:130.00 KB

页数:2页

时间:2020-07-03

高中数学 1.3第9课时 函数的单调性与导数(2)教案 理 新人教A版选修.doc_第1页
高中数学 1.3第9课时 函数的单调性与导数(2)教案 理 新人教A版选修.doc_第2页
资源描述:

《高中数学 1.3第9课时 函数的单调性与导数(2)教案 理 新人教A版选修.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课题:函数的单调性与导数(2)例3:如图3.3-6,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度与时间的函数关系图像.分析:以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A)符合上述变化情况.同理可知其它三种容器的情况.解:思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的情况吗?一般的,如果一个函数在某一范围内导数的

2、绝对值较大,那么函数在这个范围内变化的快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些.如图3.3-7所示,函数在或内的图像“陡峭”,在或内的图像“平缓”.例4:求证:函数在区间内是减函数.证明:因为当即时,,所以函数在区间内是减函数.说明:证明可导函数在内的单调性步骤:(1)求导函数;(2)判断在内的符号;(3)做出结论:为增函数,为减函数.例5:已知函数在区间上是增函数,求实数的取值范围.解:,因为在区间上是增函数,所以对恒成立,即对恒成立,解之得:所以实数的取值范围为.说明:已知函数的单调性

3、求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则;若函数单调递减,则”来求解,注意此时公式中的等号不能省略,否则漏解.四.课堂练习1.求下列函数的单调区间1.f(x)=2x3-6x2+72.f(x)=+2x3.f(x)=sinx,x4.y=xlnx2.课本练习五.回顾总结(1)函数的单调性与导数的关系(2)求解函数单调区间(3)证明可导函数在内的单调性六.布置作业

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。